The quarterly newsletter for
JSBSim, an open source flight
dynamics model in C++

Volume 1, Issue 3
15 October 2004

—
Wl
1 -

il

it

N Whlcome

Inside this issue:

JSBSim Presented at 1
AIAA Conference

The PID Controller 2
News 3
In Depth: DATCOM+ 4
JSBSim Reference 5

Frames

Back ot the Envelope

JSBSim Presented at the 2004 AIAA MST Conference

Report on the AIAA Modeling and
Simulation Conference in Providence

From August 15" through the 18" I at-
tended the 2004 AIAA Modeling and Simu-
lation Technology Conference in Provi-
dence, Rhode Island. It was well worth the
expense for me. If my memory serves me
well, there were over 800 attendees at the
co-located conferences that were held to-
gether. Several hundred papers were fielded
by authors from the U.S., Australia, China,
Germany, Canada, France, Great Britain,
and Italy, and elsewhere.

I had been worried in the days prior to
the conference that my airline flight would
be canceled — or worse — not canceled and
I’d fly smack into really bad weather as the
remnants of Hurricane Charley arrived in
Providence at the same time my
flight did. As it turned out,
Charley arrived a few hours
earlier than my flight did, and
was nothing more than a slight
depression when it passed
through. It was very overcast
with a low ceiling as we ap-
proached the runway. As the
houses became visible when we
dropped down below the cloud
deck only several hundred feet
AGL, I knew I was in the north-
east. It was beautiful.

Monday morning started
early for speakers, with a conti-
nental breakfast and introduc-
tions. The session chair for my
speaking slot was Michael Madden (NASA
Langley), who has written several papers
presenting LaSRS++ (the Langley Standard
Real-time Simulation in C++) and uses of it.
Also speaking in the session was Patricia
Hawley, who was presenting a paper on an
OO simulation architecture.

.'“’\
-"'.
-

One of the notable presentations in the
morning was by lan McManus, from Queen-
sland University of Technology, Brisbane,
Australia. Mr. McManus presented the pa-
per, “A ‘Hardware in Loop’ Simulation En-
vironment for UAVs Operating in Civilian
Airspace.” To my surprise, I found that they
were using FlightGear as the front end for
visuals, Matlab and Simulink with the
AeroSim blockset (from u-dynamics.com)
and some of the JSBSim aircraft models
(which can be read through the AeroSim
blockset). In speaking with a few of the at-
tendees, I found great excitement about
open source software, and FlightGear in par-
ticular.

Finally, after lunch came the moment I
had been waiting for months to experience. I
presented JSBSim to an interested audience

of about 40 people. The presentation went
much better than in practice — I felt very
much at ease despite worrying about my
abilities as a speaker. The presentation went
about 25 minutes, and there were several
good questions asked afterwards. [The set of
PowerPoint slides I presented are online at

(Continued on page 6)

Page 2

The Proportional-Integral-Derivative Controller
By Roy Vegard Ovesen & Jon Berndt

One simple way to control something is
to use feedback control. In feedback control,
one looks at the value to be controlled, com-
pares this value with the desired value, and
adjusts the control input accordingly.

Take driving an automobile as an exam-
ple. We look at the speedometer, compare
the speed with (for example) the speed limit,
and we adjust the gas pedal appropriately. If
we are driving slower than the limit we push
down on the gas pedal. If we are driving
faster than the limit, we let go of the gas
pedal or alternatively push down on the
brake pedal. Our everyday lives are full of
examples of feedback control.

Proportional-Integral-Derivative controller

A very commonly used feedback con-
troller is the PID controller. It calculates an
output based on a proportional gain, the in-
tegral, and the derivative of the error signal.
The error signal is the difference between
the desired (reference, or target) value and
the input (or actual sensed) value:

e=r-i
where e is the error signal, 7 is the refer-
ence and 7 is the input signal. First, let’s dis-

cuss the individual control elements.

Proportional element

In proportional control, the output is pro-
portional to the error signal. Let us imagine
that the proportional gain is 1. This means
that the output from the controller is equal
to the error signal, and consequently a large
error signal input to the proportional con-
troller will result in a large controller output.
A proportional controller is essentially an
amplifier with an adjustable gain.

Integral element

In integral control, the output is changed
at a rate proportional to the error signal in-
put. If the error is zero, then the integral
control output will be stationary (not neces-
sarily zero, though). If the error input is 1
and the integral controller gain is 1, then the
output will have a slope of 1. If we start at
time zero with the integrator output at zero,

then in this example the integrator output
would be 1 at elapsed time one second, 2
after two seconds, and so on. Integral con-
trollers can account for a bias or drift in a
system.

Derivative element

Derivative control (or, rate control) is
not used alone, because it only acts during
transient periods. In derivative control the
magnitude of the controller output is propor-
tional to the rate of change of the error that
is input to it. Derivative control has an an-
ticipatory quality. However, care should be
used with this control action, because it can
amplify noise, and can lead to saturation of
the output (for instance, it can cause an
aerosurface to hit its limit) - though both
integral and proportional can cause this too.

The figure below shows a diagram of a
PID controller. [Note that control systems
are typically made up of many more compo-
nents than a PID controller. The control sys-
tem for an aircraft such as the F-16 or space
shuttle, for instance, includes switch, sched-
uled gain, hysteresis, deadband, gain, sum-
mer, etc. control components. JSBSim can
model all of the various components.]

The error signal goes through each ele-
ment of the PID controller in parallel (not
serially), and calculates the output signal

Ep-elt)
Desired State __ (1) B Control § ignal ,—‘
J— K- f elt) b M
+ L
d
Kp-get)
Feedback Signal

Measured State

from the error signal according to this for-
mula:

0:00+Kp-e+Kife-dt+Kd-é

The first element o, is the output bias.
This constant value corresponds to a work-
ing point for the controller. When the error
signal e is zero the output o is equal to o,.
For the sake of simplicity, we will imagine

(Continued on page 3)

News ltems

Development and coding is well under
way for the upcoming move to the use of a
more robust and proper XML parser (based
on SimGear’s EasyXML wrapper of eXpat
by David Megginson). A new C++ class has
been created that extends EasyXML for
JSBSim use. Also written is a utility class
that encapsulates an XML element; this
class is used by the EasyXML-derived class,
FGXMLParse. There is of course an upcom-
ing change to the JSBSim configuration file
format. The new format will also extend the
capabilities of JSBSim. Math functions will
be allowed in flight control component
specifications as well as in aerodynamic co-
efficient definitions, etc.

Also under way is an evaluation of the
Cessna C-172r Skyhawk flight model. Per-
formance figures given on the manufac-
turer’s web site (as well as from other
sources) are being compared with flight
model performance. Adjustments have been
made, and testing and adjustments will con-
tinue until the model performs within toler-
ances. But, what tolerances? That’s another
question. The FAA publishes requirements
that must be met by a simulator in order to
be certified at a particular level. To what
level of accuracy JSBSim should match ac-
tual performance is currently being dis-
cussed.

—JSB

(Continued from page 2)

that the output bias is zero. K, is the proportional element. The proportional gain K;, is multi-
plied with the error signal. K; | e-dt is the integral element. The integral gain K; is multiplied
with the integral from zero up to the present time of the error signal. Finally, we have the
derivative element K4-¢. The derivative gain K, is multiplied with the time-derivative of the
error signal. Now imagine that we set both the integral gain K; and the derivate gain Ky to
zero. The PID formula is reduced to only the proportional element K,,. The controller is then
called simply a P controller because it only contains the P part of PID.

Making a PID Controller Using the JSBSim Flight Control System Components

Of the many components that comprise the set used to model flight control systems in
JSBSim, three are used to model a PID controller: the Integral, Gain, and Filter components
(specifically, the lead-lag filter component). Below is the JSBSim definition for an example
PID controller (this definition is based on the v1.0 JSBSim configuration file format — v2.0
is pending), with a property, “roll-error” as the input to all three controller elements:

<COMPONENT NAME="Proportional controller" TYPE="PURE GAIN">
INPUT roll-error
GAIN 2.0

</COMPONENT>

<-- This is Kp -->

<COMPONENT NAME="Integral control" TYPE="INTEGRATOR">
INPUT roll-error
Cl 0.125

</COMPONENT>

<-- This is Ki -->

<COMPONENT NAME="Derivative control" TYPE="LEAD LAG FILTER">

INPUT roll-error
Cl 0.1 <-- This is Kd -->
c4 1.0

</COMPONENT>

<COMPONENT NAME="PID control summer" TYPE="SUMMER">

INPUT proportional-controller
INPUT integral-controller
INPUT derivative-controller

</COMPONENT>

Page 3

The control system for an
aircraft such as the F-16
or space shuttle, for
instance, includes switch,
scheduled gain, hysteresis,
deadband, gain, summer,
etc. control components.
JSBSim can model all of

the various components.

Page 4

I was looking for a way to
generate a model that was
fairly close to actual
aircraft performance with

a minimum of cost.

In Depth: DATCOM+

By Bill Galbraith

I was asked to write an article about
DATCOM+ for this newsletter. Now, I
could spew off the technical description of
what DATCOM does, its history with the
Air Force, and expound on all of its attrib-
utes, but you can read about those some-
where else. (See below for a link to the
DATCOM User’s Manual). Instead, I
thought I’d say a few hundred words about
my experience with DATCOM.

I build flight simulators for a living, for
airplanes and helicopters, mainly for the
military, but sometimes for commercial ap-
plications. Sometimes, the trainers are sim-
ple devices that just need to fly something
like the target aircraft, other times it’s a full-
up flight model. The manufacturers some-
times have their flight models available, but
they are usually very expensive. For a sim-
ple $500,000 trainer, you just don’t have the
budget to buy their flight model. You also
have to raise an eyebrow at their flight
model when you see it was developed be-
fore the airplane was built, and during initial
testing, the configuration was changed to
improve flight characteristics. Was the
model refined after that design change?
Sometimes, you just can’t get these answers.

This is what drove me to investigate
DATCOM. I was looking for a way to gen-
erate a model that was fairly close to actual
aircraft performance with a minimum of
cost. I was looking towards conventional
aircraft in the subsonic flight range, within a
nominal flight envelope that would include
take-off and landing, climbs, turns, and level
flight, with somewhat representative stall
effects. My initial investigation was done
using a T-34C, a low-wing trainer turboprop
aircraft manufactured by Beech Aircraft in
the 1970’s. I had the Beech Aircraft flight
model available, some flight test results
from the Navy flight testing, and many of
the reports from Patuxent River on this air-
craft. I obtained a copy of the DATCOM
Fortran code, got it compiled and cleaned up
so it was useful. I built a rough DATCOM
model of the T-34, and was very impressed
with the results, enough so that I felt it was
worth further investigation.

DATCOM uses an incremental build-up
method, starting with wings and fuselage,

adding ailerons and flaps, then a tail with
elevator. A DATCOM note mentions that
the moveable surfaces on a lifting surface
are assumed to be on the aftmost lifting sur-
face. Therefore, ailerons and flaps have to
be added before the tail and elevator. For
more exotic designs, this input file will have
to be restructured. Along the way, I realized
that the input format was pretty user-
abusive, so I built a small AWK script that
would allow me to embed comments into
my DATCOM input file, and the AWK
script would strip out my comments and
feed the results into the DATCOM program.
These comments included the description
from the DATCOM User’s Manual, as well
as notes that I left when 1 figured out some
particularly vague items. I did note some
short-comings in the DATCOM output,
mainly in the directional axis, but those
were small problems compared to the infor-
mation that DATCOM produced.

The next simulator that I worked on was
a Cessna Citation II. The flight model and
flight testing was being done concurrently
by a brilliant engineer, Keith Richards [Ed:
no — not that Keith Richards] of Alpha Sys-
tems Engineering. With thousands of hours
invested in that project, he had an FAA
Level B tested flight model and flight test
results. Sounded like a good target for more
experiments. I built a DATCOM input file
for the Citation, which was made much eas-
ier by the fact that the input file had lots of
comments in it. The output format was be-
coming difficult to handle, as I was doing
iterations to refine my model, and grew tired
of transferring data from their output format
to what I needed. I dug through the horribly-
commented Fortran code and figured out
where I needed hooks in order to extract
data into files in the format that I needed it. I
output it in a format that allowed me to plot
the coefficients against those from the Cita-
tion simulator, and once again, found good
concurrence. I added another output module,
to output the coefficients in a format to be
included in the Citation simulation. There
again, the results of the simulation were
quite impressive.

Then, along came JSBSim. Here was a
flight model that I was interested in, and
(Continued on page 5)

(Continued from page 4)

there seemed to be many people in the
JSBSim community interested in DAT-
COM, so I figured it was good swap. With
some small modifications, I was able to out-
put the coefficients in the JSBSIM XML file
format. All of the data for a JSBSim model
is not available in the DATCOM input file,
so the generated XML file needs to be
modified before it can be used in JSBSim,
but it’s a pretty good start, especially to-
wards the aerodynamic coefficients.

I’ve made my DATCOM+ program
available to the JSBSIM community, the
executable running in a CMD window of
Windows XP or under Cygwin. DATCOM+
is a superset of DATCOM, that superset be-
ing the user-friendly input format and the
JSBSim-formatted output. For now, I'm
calling it an alpha-beta release. The beta
portion is the DATCOM part itself. 1 feel
good about the DATCOM code being good,
but we don’t handle all the interesting cases
yet, such as near-ground effects and propul-
sion effects. The alpha part is the JSBSim
output. I’'m new to the JSBSim world, and
the output format can be refined further, but
it’s a decent start if you are interested in
building a model of a particular aircraft.

I am presently working on an Automatic
Fidelity Test (AFT) system in C++ using
JSBSim, so that flight models can be evalu-
ated against flight test data or published per-
formance data. Future work in DATCOM+
includes near-ground and propulsion effects,
a database of DATCOM models, and better
output for JSBSim-format files. Your sug-
gestions are welcome.

You can find my DATCOM+ program
and the USAF DATCOM User’s manual on
my web site at www.holycows.net/datcom.

JSBSim Reference Frames
by Mathias Frohlich & Jon Berndt

There are several different coordinate
frames used in JSBSim. One question that
was raised at the end of my presentation of
JSBSim at the ATAA MST Conference dealt
with just that. It’s important to be aware of
the various coordinate systems that are used.
This note describes each of the frames:

Earth-Centered Inertial (ECI) The ori-
gin for the ECI frame is fixed at the center

of the earth, with the Z axis towards the
north pole. It does not rotate with the earth.
This frame never shows up directly in the
equations of motion. It is assumed to be an
inertial frame, neglecting the movement of
the earth around the sun and larger scale
movements.

Earth-Centered Rotating (ECR) The ori-
gin for the ECR frame is fixed at the earth.
The X axis points towards a latitude and
longitude of zero. The Z axis points towards
the north pole. The frame does rotate with
the earth. The state value for position
(latitude, longitude, altitude) in the equa-
tions of motion is expressed in this frame.

Local (LVLH) This frame is usually re-
ferred to as simply the Local frame, but the
complete and conventional label given is
Local Vertical / Local Horizontal. This
frame moves with the aircraft. The Z axis is
coincident with a line drawn from the air-
craft to the center of the Earth, and positive
down. The Y axis points east and the X axis
points north, with the origin located at the
aircraft center of gravity. The X and Y axes
are tangent to the earth surface plane at all
times.

Structural The structural frame is the
frame in which the manufacturer typically
uses to refer to the location of elements such
as landing gear, the mean aerodynamic
chord, the CG, etc. The terms station, butt
line, and waterline are often used to refer to
the X, Y, and Z locations, respectively. In
this frame, the X axis is parallel to the fuse-
lage centerline and is positive aft, the Y axis
is positive towards the right (imagine your-
self sitting in the cockpit), and the Z axis
completes the triad, positive upwards. The
origin is often placed on the fuselage center-
line at or in front of the nose.

Body The body frame is the frame in
which vehicle velocities are reported (U, V,
and W velocities and accelerations). The
body frame is similar to the structural frame,
except that the X axis is positive forward,
and the Z axis is positive downwards (the
body frame is rotated 180 degrees about the
structural Y axis). The origin of the body
frame is at the vehicle CG.

Note that JSBSim reports latitude, longi-
tude, and altitude in geocentric coordi-
nates — not geodetic. See the sidebar at right
for a definition of the difference.

Page 5

Geocentric and
Geodetic: What’s the
difference?

The geocentric latitude is
given by the angle between the
plane of the equator and the
radial drawn from the center of
the earth to the point of interest
(e.g. an aircraft). Note that
because the earth is not
spherical, but ellipsoidal, the
line from the center of the earth
to the point of interest may not
be normal (perpendicular to) to
the surface of the Earth.

The geodetic latitude is
given by the angle made by the
equatorial plane and a line
passing through the point of
interest and which is also
perpendicular to the surface of
the earth. The geodetic latitude
is a little more than the
geocentric latitude. The
geodetic altitude is also a little
less than the geocentric
altitude. The geodetic position
corresponds to what you would
see on a map.

Page 6

Hig}ﬂighteJ

Feferences

Online.:

Dr. Wayne Durham’s online texthook for his
Aircraft Dynamics and Control class at
Virginia Tech:

http://www.aoe.vt.edu/~durham/AOE5214

\isitus on the weh at:
Www.jshsim.org

SEY

L

Q

(Continued from page 1)

the JSBSim web site at www.jsbsim.org -
select the Documentation link.] Several
people whose names I recognized were in
the audience, including Bruce Jackson
(author of LaRCSim and more recently a
key collaborator on the proposed DAVE-
ML AIAA flight simulation exchange for-
mat specification), and Dr. Peter Zipfel
(http://www.aiaa.org/store/
storeproductdetail.cfm?id=1198). Several

and I enjoyed it very much. I ended up
knowing a surprising (to me) number of
people attending the event and had some
very enjoyable dinner conversation. I also
bumped into a JSBSim mailing list member,
Nick Hein, and had an enjoyable conversa-
tion about various simulation topics.

Next year’s conference will be held in
San Francisco. For more information, visit
www.aiaa.org. -JSB

people approached me for more information
after the presentation. I found out that the
paper, “JSBSim: An Open Source Flight
Dynamics Model in C++”, was among the
several candidate papers nominated for Best
Paper award for the Modeling and Simula-
tion conference. The winner will not be
known for a while.

The keynote speaker on Tuesday at
lunch was Peter Diamondis, the motivating
force behind the X-Prize and several other
business ventures. He spoke on the upcom-
ing X-Prize flight attempts, his new
NoGravity venture, etc. (see Www.
nogravity.com)

Tuesday night I attended a banquet at the
Bella Vista restaurant along the river where,
later on in the evening, fire-tenders on water
gondolas lit torches along the riverfront, as
music echoed across the water — WaterFire,
Providence. It was a well-attended event,

Next Issue:

“Back of the Envelope” is a new communi-
cation tool written for a wider audience than
core JSBSim developers, including instructors,
students, and other users. The articles featured
will likely tend to address questions and com-
ments raised in the mailing lists and via email.
If you would like to suggest (or even author)
an article for a future issue, please email the
editor at: jsb@hal-pc.org.

Some possible topics for future issues
includes:

e The Property System
e JSBSim Configuration Files in XML

e Integrating the Equations of Motion in
JSBSim

e Scripting JSBSim runs

