The quarterly newsletter for
JSBSim, an open source flight
dynamics model in C++

Volume 1, Issue 4

15 January 2005

One of the most
exciting new capabilities
offered in the v2.0
config file format is the
ability ro specify

equations.

Inside this issue:

JSBSim Configuration File
Format v2.0 Nears
Release

News

In Depth: Using JSBSim
with Matlab / Simulink

Integrating JSBSim With 7

Your Application

Simulate This! 8

The Custer Channel Wing

Back ot the Envelope

JSBSim Configuration File Format v2.0 Nears Release

In the past few months a major modi-
fication task has been ongoing around
the JSBSim configuration file format.
This was done in order to:

- Add new capabilities

- Allow specification of units

- Make the JSBSim “language”
valid XML

- Take advantage of what XML
could offer us

- Be more compatible with the
emerging DAVE-ML standard

- Use an open source XML
parser to offload parsing re-
sponsibilities from JSBSim

This effort has been mostly com-
pleted at this time. The Cessna 172x
model has been migrated to the new
format and tested. Data comparisons
between old and new simulation runs
(regression testing) show that — at least
in this test case — there have been no
unintended side effects of the change-
over.

This change does not simply involve
the JSBSim aircraft configuration file for-
mat. The engine, thruster, script, and
reset files have also been modified. The
automatic configuration file generating
web application, “Aeromatic”, has also
been modified to produce config files in
the new format, as has Bill Galbraith’s
modification to the DATCOM applica-
tion, called DATCOM+.

Most importantly, to allow existing
users to use their aircraft models using
the new code, the older version of
JSBSim has been modified to allow the
standalone version of JSBSim (the ap-
plication compiled with the JSBSim.cpp
file) to now take another argument on
the command line. For instance,

Jjsbsim --aircraft=747 --initfile=reset00 --convert

The “convert” option directs JSBSim
to output (to the standard output) a con-
figuration file in the new v2.0 JSBSim
config file format. This conversion capa-
bility has been completed and early test-
ing shows that it works as expected. At
this time the conversion program only
converts the aircraft file itself, not any
external files that might be referenced or
used.

New Capability: Equation Handling

One of the most exciting new capa-
bilities offered in the v2.0 config file for-
mat is the ability to specify equations.
Now, instead of specifying a lookup ta-
ble for propeller thrust, or lift coefficient
one can specify an equation — or, rather,
a function.

Here is how the lift due to alpha is
now specified in v2.0 (see Fig. 1, next
page). You will notice that the COEFFI-
CIENT element is gone. Coefficients are
still there, but what is actually being
specified by the function definition in the
example above is a force contribution.
There will normally be many contributing
elements in each axis that will comprise
the total force (or moment) in an axis.

Looking closer at the example, one can
see that there is a “product” element
that contains property and table ele-
ments. The table element describes the
actual lift coefficient due to alpha, with
lookup indices into the table of alpha
and a stall hysteresis parameter (which
we don’t have to know much about for
this discussion). In order to turn the co-
efficient into an actual force, we have to
multiply the coefficient by the non-
dimensionalizing quantities gbar and
reference area. With the new version of
JSBSim, we have created a new prop-
(Continued on page 2)

Page 2

(Continued from page 1)

erty called “gbar-area” that is the prod-
uct of gbar and reference area, since it
is used extensively. Also seen within the
product element is a property called,

nition:

The property name that will be assigned
to the free function above is, “aero/
function/ground-effect-factor-lift”. You

axis name="LIFT”>

<function name="aero/coefficient/CLwbh">
<description>Lift due to alpha</description>

<product>

<property>aero/function/ground-effect-factor-lift</property>
<property>aero/gbar-area</property>

<table>

<independentVar lookup="row">aero/alpha-rad</<independentVar>
<independentVar lookup="column">aero/stall-hyst-norm</independentVar>

<tableData>
0.0 1.0
-0.09 -0.22 -0.22
0.0 0.25 0.25

0.32

1.38 0.99
0.34 1.3 1.05
0.36 1.15 1.15
</tableData>
</table>
</product>
</function>

Figure 1. Example of how a lift axis coefficient is now specified using a
“function” in the JSBSim config file v2.0 format.

“aero/function/ground-effect-factor-lift”.
Prior to config file format v2.0, JSSBSim
used “factor groups” to modify coeffi-
cients, allowing more complex features
to be modeled. For example, when fly-
ing close to the ground, coefficients con-

can see this referred to in the "aero/
coefficient/CLwbh" example farther
back. This capability allows for “scratch”
functions to be defined and used later
one.

<aerodynamics>

<function name="aero/function/ground-effect-factor-1ift">
<description>Change in 1lift due to ground effect factor.</description>

<table>

<independentVar>aero/h b-mac-ft</independentVar> <!-- row lookup -->

<tableData>
0.0 1.203
0.1 1.127
0.15 1.090

0.9 .003
1.0 .002
1.1 1.0
</tableData>
</table>
</function>

1
1

<axis name="LIFT”>

Figure 2. Specification of a free function (a function not belonging to any axis
in particular) in the JSBSim config file v2.0 format.

tributing to total lift and drag should be
modified by a “ground effect” factor. For
v2.0, such a multiplier is defined once in
the aerodynamics section of the con-
figuration file — outside of any axis defi-

The product element (as you might
guess) directs JSBSim to take all the
parameters specified within it and multi-
ply them together. There are other op-

(Continued on page 3)

News ltems

As pointed out in the main article, the
new JSBSim config file format is in final
preparations for release into the main
CVS development branch on the
JSBSim web site.

The month of December was a big
one for the project, with the highest traf-
fic visiting the web site in the four years
that statistics have been kept at Source-
Forge. Almost 3,500 page views were
A recorded.

A

(Continued from page 2)
erations that can also be specified in the config file:

product difference
sum quotient
pow abs

sin cos

tan asin

acos atan

The operations can be nested, effectively being analogous to the use of paren-
theses. Operands can be actual values, properties, or the value returned by a 1, 2,
or 3 dimensional table:

<function>
<description> example: area of a circle </description>
<product>
<pow>
<sum>
<property> inner radius </property>
<property> outer radius </property>
</sum>
<value> 2.0 </value>
</pow>
<value> 3.1416 </value>
</product>
</function>

The syntax of the construct above is very similar to (and was inspired by)
MathML, but the format settled on for JSBSim is a smaller subset.

Functions are used in several places (and may show up in the flight control sys-
tem portion in the near future) and offer a new and powerful capability to JSBSim in
modeling aircraft flight dynamics.

New Feature: Specification of Units

Units can now be specified for most items in the configuration file, and new con-
versions can be added in FGXMLElement.cpp when needed. The basic syntax is
this:

<parameter unit="UNIT”> </parameter>
for example:

<wingarea unit="FT2"> 174 </wingarea>

In this case, the example shows that the wing area is 174 square feet. The fol-
(Continued on page 4)

Page 3

=

New aircraft models in-work:

Airbus A-380

The syntax of the
[equation] construct
.. 15 very similar to
(and was inspired by)
MathML, but the
format settled on for
JSBSim is a smaller

subset.

Page 4

The new configuration
file format and
associated files/functions
may make their way into
the main JSBSim branch
in CVS in the next few

weeks.

(Continued from page 3)

lowing specification would result in the
same results (giving the wing area in
square meters):

<wingarea unit="M"> 16.16 </wingarea>

If a given conversion is not handled,
an error message will be displayed and
the program will exit.

autopilot altitude hold function state,
along with support code such as prop-
erty binding functions for the parameter.
Now, specific hardcoded parameters
have been removed in many cases.
What is available now is the ability to
specify a property to be created that is
read/write. For instance, in the experi-
mental autopilot definition for the C172x,
properties can be caused to be created

<autopilot name="C-172X Autopilot">
<!-- INTERFACE PROPERTIES -->
<property>ap/attitude_hold</property>

<property>ap/altitude hold</property>
<property>ap/heading hold</property>

<property>ap/altitude setpoint</property>
<property>ap/heading setpoint</property>

<property>ap/aileron cmd</property>
<property>ap/elevator cmd</property>

<component name="Roll AP Autoswitch" type="SWITCH">

<default value="0.0"/>

<test logic="AND" value="fcs/roll-ap-error-summer">

ap/attitude_hold ==
</test>
</component>

Figure 3. Interface properties. The attitude hold property is created as an in-
terface to the “outside”, and is used on the “inside” by the component shown.

New Feature: Read/Write Interface
Property Creation

In the flight control system model,
oftentimes a switch will need to be
thrown or a flag set in order to activate a
particular control law path. For example,
turning on an altitude hold autopilot
function required the JSBSim flight con-
trol class (FGFCS) to have a hardcoded
integer parameter that represented the

at runtime as shown in Figure 3.

In this example, the ap/attitude hold
property can be set from either Flight-
Gear or a JSBSim script, and subse-
quently affect control law execution by
referencing this property.

The new configuration file format and
associated files/functions may make
their way into the main JSBSim branch
in CVS in the next few weeks.

In Depth: Using JSBSim with Matlab / Simulink

By D. Wysong, Aerocross Systems

So, you have a Matlab/Simulink
model that you want to integrate with
JSBSim? Your model can represent
any number of things: a high-fidelity ac-
tuator or engine model, a navigation
system, or a flight control system. Re-
gardless, you would like to use JSBSim
to try your model out in the nonlinear,
6DOF world (taking advantage of a free
and open source application). Well, |
have some good news and some bad

news to share with you.

The good news is that you're crazy —
just like me! Whether your desire to in-
tegrate these two seemingly different
applications is fueled by a genuine need
or by a compulsion that doctors can'’t
seem to properly medicate, you’re in
luck. I've done this on a few occasions
and am about to let you know how.

(Continued on page 5)

(Continued from page 4)
Ready for the bad news? You'll need
your checkbook...

I'll assume that you already have a
Matlab/Simulink license. For those who
don’t have the resources for a license,
be advised that there are open-source
alternatives available (Scilab/Scicos/
TrueTime).

The easiest, most pain-free way to
integrate Matlab/Simulink with JSBSim
(or any other external process) is with a
Simulink add-on called Real-Time Work-

Simulink in External Mode

Ethernet (TCP/IP)

Your first task will be to configure
your Simulink model for networked op-
eration. This is all made possible
through the magic of RTW with some-
thing called “External Mode”. Behind
that fancy name lies the “hooks” your
Simulink model needs so that it can act
as a network client. RTW also provides
the logic that sits behind those ext *
blocks. Rather than add to the confu-
sion, I'm going to step back and raise
the old “this is an exercise left to the
reader” flag and send you immediately
to the MathWorks website and your
stack of RTW documentation to learn all

JSBSim

JSBSim. cpp

Figure A. Matlab/Simulink integration with JSBSim.

shop (RTW). It isn’t the only way to do
it, but it certainly is the quickest and
cleanest. | will defer to the MathWorks
website for complete details about RTW
(www.mathworks.com), but the many
automotive, UAV, commercial/military
aircraft, and spacecraft programs that
utilize the functionality offered by Mat-
lab/Simulink/RTW are evidence of the
power that these software packages of-
fer. If you buy it you won't be disap-
pointed.

Ok, enough with the sales pitch.
What we're going to construct is a sim-
ple network between your Simulink
model (the client) and your JSBSim (the
server). Your Simulink model will com-
municate with JSBSim via an Ethernet
socket, and the new simulation loop will
be closed when both sides of the
Ethernet link are operating in data-
driven, lock-step mode with each other.
See Fig. A. for a diagram of what the
new Simulink/JSBSim closed-loop
6DOF platform will look like.

there is to know about “External Mode”
operation. Yes, that was a dirty trick,
but you'll learn more from a half-hearted
web surfing attempt than you would
from reading chapters of my senseless
babble. Trust me.

Under normal circumstances, the
next thing you would have to tackle is
figuring out how you are going to con-
nect to and manage the network trans-
port layer between your Simulink model
and JSBSim. Well, lucky for you these
are not normal circumstances! RTW is
going to handle all of the hassles com-
monly associated with those pesky net-
work interfaces including socket initiali-
zation, connection management, and
socket data handling. The functions and
libraries are all provided and it makes
the whole ordeal relatively painless.
Your only network-related responsibility
is to make sure that your data struc-
tures — the struct’s or union’s that you
create to hold your input and output
data — are consistent on both ends of

(Continued on page 6)

Page 5

http://www.mathworks.com

Page 6

(Continued from page 5)

the network interface. Pass your output
data pointer to the relevant RTW “set”
function and off it goes. Pass your input
data pointer to the relevant RTW “get”
function and data appears. See — who
said you couldn’t get your money’s
worth from a commercial software pack-
age?

Now, what are you going to do about
JSBSim? You have a huge pile of
documentation that'll help you figure out
Matlab/Simulink/RTW, but you're abso-
lutely empty handed when it comes to
converting JSBSim into the server for
your new simulation network. When
stuck in a situation like this there’s only
one thing you can do — break some-
thing!

It isn’'t quite as fun as it sounds be-
cause the ritual violence is limited to
one snippet of code. Peer inside the
stand-alone JSBSim main program
(JSBSim.cpp) and locate the magical
while() loop. See that call to FDMExec-
>Run()? The area above that is going
to be the new home for all of your net-
work input/output and data-driven simu-
lation logic.

Here is the pseudo-code for your
new, JSBSim server (JSBServer.cpp?):

main ()

{
// initialize Ethernet interface
// using RTW

result = FDMExec->Run() ;

while (result) {
// LOAD JSBSim output data into
// Simulink input data

// structure here.

// PASS data across socket using
// RTW here.

// AWAIT receipt of data on
// socket using RTW here.

// PARSE Simulink output data
// into JSBSim input variables
// here.

result = FDMExec->Run () ;

After initialization, the while () loop

is entered and the Simulink input data
structures are filled with JSBSim state
data. [You need only provide code that
implements low-level communications.
You need not be concerned with issues
such as data conversions between host
and target, or with the formatting of
messages. Code provided by Real-Time
Workshop handles these functions.
http://Iwww.mathworks.com/access/
helpdesk/help/toolbox/rtw/rtw_ug/
data_ex9.html]

Next, the input data structures are
sent across the network to the Simulink
model using RTW functions. JSBSim
execution should then hang on a socket
read while the Simulink model executes
and loads data into JSBSim input data
structures. When these data packets
arrive on the socket, JSSBSim execution
continues. The input data packets are
parsed and the data are loaded into the
appropriate JSBSim variables. Finally,
after the logic that | omitted for clarity is
executed, FDMExec->Run() is called
and the fun starts all over again. Pretty
simple, huh?

Notice that RTW is there again to
rescue you with source code for initializ-
ing the Ethernet sockets, initiating com-
munication with the Simulink client, and
sending/receiving data across the net-
work (ext_svr.c, ext_svr_transport.c).
As long as you manage the structures
for your input/output data and pay atten-
tion to the logic sequence, RTW will
handle the rest of the networking nasti-
ness.

So, there you have it — how to inte-
grate your Matlab/Simulink models with
JSBSim. Keep in mind that | have only
exposed you to one of the many options
that RTW makes available. You could
also use RTW to generate C source
code and directly integrate that with
JSBSim. The pseudo-code remains the
same, you just get to ignore all of the
networking nonsense and make C func-
tion calls instead. Have fun!

http://www.mathworks.com/access/

Integrating JSBSim with Your Application

By Jon S. Berndt

JSBSim is meant to be a self-
contained, platform-independent, easy-
to-incorporate flight dynamics model
(FDM) that can be leveraged by devel-
opers in crafting their own simulation
applications. Unfortunately (as often
happens in open source projects) docu-
mentation is one of the last things to be
developed, and so new users can be
overwhelmed. This article will (hopefully)
help new developers get started by
pointing out the documentation that is
currently available, and by instructing
the reader how JSBSim can be incorpo-
rated into an application.

For an overview on JSBSim that con-
tains some insight into the architecture
and how an external application might
use JSBSim, see the JSBSim web site,
www.jsbsim.org. Select the Documenta-
tion link. Some of the articles are out-
dated — and more are destined to be
outdated soon as the config file format is
changing — but these articles should be
most helpful:

1. AlAA-2004-4923 “JSBSim: An
Open Source Flight Dynamics Model in
C++”

2. Draft JSBSim APl Documenta-
tion (see the documentation page at
www.jsbsim.org, as well as the docu-
mentation for FGFDMExec)

The next place to look closely would
be the interface code used to splice
JSBSim with FlightGear, JSBSim.cxx.
This code is managed in CVS (the
source code repository) at www.jsbsim.
org. The code in JSBSim.cpp — the stub
code used to instantiate JSBSim in a
standalone capability — is also instruc-
tive.

Using JSBSim can be summarized in
the order of execution:

1. Instantiate FGFDMExec

2. Load the aircraft model

3. Load the initial conditions

4. Trim at the initial conditions (not
absolutely required, but recommended)

5. Begin cyclic execution (call the
Run method of the FGFDMExec class)

One can also run JSBSim using a
script, which takes care of loading the
aircraft and initial conditions that are
specified in the script file. The operation
using scripts is almost identical:

1. Instantiate FGFDMExec

2. Instantiate an FGScript object

3. Load the script (the script will
specify and load the aircraft and initial
conditions)

4. Cyclically call the script object’s
RunScript method and the Run method
of the FGFDMEXxec class)

This part of the process is all fairly
straightforward. In the case of scripted
operation, pilot commands or inputs to
the control system or autopilot are con-
trolled by the script itself. Outputs can
also be sent over a socket connection
by proper specification in the configura-
tion file. But, what about the case where
JSBSim is used in an application and
scripting is not utilized? How does one
input commands and receive state infor-
mation as output (i.e. velocity, position,
attitude, etc.)?

There are two mechanisms to do
this. One is by using class methods
themselves to directly set or get the
relevant parameters. The other is to use
the property system to do so. Looking at
the FlightGear interface to JSBSim
(FGJSBSIim in JSBSim.cxx) one can
see that the approach used there is the
former. An excerpt from the class is pre-
sented here (heavily edited to show only
the needed functionality):

void FGJSBsim::update()
{
copy to JSBsim();
fdmex->Run () ;
copy from JSBsim();
}

The copy_to_JSBSim() function does
the following (again, heavily edited):

bool FGJSBsim::copy_to_JSBsim()
{

// copy control positions

// into the JSBsim structure

FGFCS* FCS=FDMExec->GetFCS() ;

(Continued on page 8)

Page 7

http://www.jsbsim.org
http://www.jsbsim.org
http://www.jsbsim

Page 8

Haghhghte(l
Feferences

Orndine:
Custer Channel Wing

www.custerchannelwing.com

http://techreports.larc.nasa.gov/
Itrs/PDF/2002/aiaa/NASA-aiaa-
2002-3275.pdf

Helicopter Modeling
www.robertheffley.com/docs/
Manudyne%2083-2-3.zip

www.simlabs.arc.nasa.gov/
library_docs/rt_sim_docs/Toms.
pdf

\isitus on the weh at:
Www.jshsim.org

£y

Q

\

>

(Continued from page 7)

FCS->SetDaCmd (local ail cmd);
FCS->SetRollTrimCmd

(local ail trim cmd);
FCS->SetDeCmd (local elv cmd) ;
FCS->SetPitchTrimCmd

(local elev_trim cmd);
FCS->SetDrCmd (local rud cmd) ;
FCS->SetYawTrimCmd

(local yaw trim cmd);

The flight control system class
FGFCS is the interface to pilot com-
mands, and methods exist for setting
the control commands in that class.
Since the interface class knows the ex-
ecutive class instance (FGFDMExec is
instantiated from within the interface
class FGJSBSim) and since there are
methods in the executive class that get
pointers to the instances of the model
classes (such as FGFCS) one can gain

access to the specific control setting
functions.

Getting state information from
JSBSim is pretty much just the reverse
process:

bool FGJSBsim::copy from JSBsim()
{

set local Accels Body(
Aircraft->GetBodyAccel (eX),
Aircraft->GetBodyAccel (eY),
Aircraft->GetBodyAccel (eZ)
) i

set local Velocities Local (
Propagate->GetVel (eNorth),
Propagate->GetVel (eEast),
Propagate->GetVel (eDown)

) i

We’'ll leave the other access method
(the use of properties) for a later issue.

Simulate This! The Custer Channel Wing

Exercise: Design a simple
(without even flaps), 450
HP, five passenger plane,
capable of slow flying at 20
mph, 160mph cruise, 200
foot takeoff and landing
run, with extreme load car-
rying ability.

Sometime in the 1920s,
Willard Custer took shelter
in a barn during a hurri-
cane. Much to his surprise
and fascination, the roof of
the barn suddenly lifted off,

and soared through the air. He wondered why an airplane had to gather speed on a
runway, while a barn roof, a poor airfoil by any reckoning, could fly from a standing
start. He soon came to the realization that it was the speed of the air over the sur-
face, not the speed of the surface through the air that created lift. Bernoulli’s princi-
ple applied in both cases. He settled on the idea of pulling the air through channels

that were, in fact, the lower half of a ven-
turi. He was reversing the normal method
of powered flight. Instead of using the en-
gines to move the airfoil through the air,
he used the engine to move the air
through the airfoil. His channel had the
effect of going several hundred miles per
hour, due to the induced air flow, while
standing still. The airflow over the surface
of the channel created conventional lift,
and a lot of it. It was at this point that Cus-
ter settled on," It's the speed of the air, not
the airspeed”, which became his mantra
of "aerophysics".

About this newsletter ...

“Back of the Envelope” is a new
communication tool written for a wider
audience than core JSBSim developers,
including instructors, students, and
other users. The articles featured will
likely tend to address questions and
comments raised in the mailing lists and
via email. If you would like to suggest
(or even author) an article for a future
issue, please email the editor at:
jsb@hal-pc.org.

http://www.custerchannelwing.com
http://techreports.larc.nasa.gov/
http://www.robertheffley.com/docs/
http://www.simlabs.arc.nasa.gov/
http://www.jsbsim.org

