The quarterly newsletter for
JSBSim, an open source flight
dynamics model in C++

Back of the Envelope

Volume 2, Issue 1
15 April 2005

J5BSim Commander i

Mg

s COMMANDER

Wersion 0.1
©2005 by Jon &, Berndt
www JSBSim org

Inside this issue:

Sneak Peek: JSBSIim 1
Commander

News 3
In Depth: C# and 4
JSBSim.Net

Scripting in JSBSim 7
Decoupling, Generalizing, 9

and Isolating Commands
and Effectors in the
JSBSim FDM

Simulate This! LLRV 10

Sneak Peek: JSBSim Commander

One drawback for beginners in creat-
ing a flight model for an aircraft is that the
information that must be gathered can be
hard to come by, and the format of the
configuration file can be confusing. To ad-
dress this, an application is being devel-
oped to greatly ease that process.

“JSBSim Commander” (the name for
the alpha version) is currently being devel-
oped for the Windows platform. That news
may be disconcerting for some, but there
are reasons for it. The application is com-

Here is a list of features that are
planned for JSBSim Commander:

1) Reads, writes, and allows editing of
JSBSim configuration files
(configuration version 2.0, not yet re-
leased)

2) The flight control system editor will
allow block diagrams to be built for
any number of “channels”. A channel
represents a string of controls such as
stick to elevator, pedals to rudder,
landing gear lever to landing gear ac-

. — _lal x| tuator, etc.

File Tools Help A compo-
General Informationl Metricsl Mass &Ea\ancel Ground Beactmnsl Propulsion ~ Elight Control |Aerodynamics| Qutpull ; nent may
- 1] simpl be
o))) [) S Y S ST e
=l onto the

ma workspace,
Input G a and con-
e[recea

Sunmer Leadlag Deadband Output other com-

Gain Component Properties

Input Switch
Gain Mame |pilot stick input gain
Gain Type
’7(’" Pure Gain i Agrosurface Scale
Min tax
Base Gain [1.00 Limit{0.00 0.00
Scheduled Gain I Aerosurface Scale |
Index Property I vl Scheduled Gain
1
| Murmber of Rows |2 ':I
Pitch I 2 v _g
I 00
. . . 1.0 1.0
Fig 1. The JSBSim Commander Flight Con- . 5
trol System editor. Here, a string of Pitch It
channel components has been assembled
and one of the gain components is being Lok | [concel | 7 Heln |

edited in the gain component editor.

plex and large. It involves a lot of screens.
Given the main developer’s familiarity with
Borland C++Builder, that tool is being
used to create the GUI screens very rap-
idly. An attempt was made to use a cross
platform tool (Glade) to build the initial
GUI, but that proved to be a nightmare.
Additionally, the time required to learn a
new tool/paradigm just isn’t there.

ponents. Each component can be ed-
ited depending on its type.

3) The propulsion system editor will al-
low the creation of new engines and
thrusters, and/or the use of existing
engines and thrusters. A list of exist-
ing engines and thrusters is pre-
sented to users, from which the user
can “subscribe” to an engine, and
then assign a thruster to it.

(Continued on page 2)

Page 2

(Continued from page 1)

4)

The aerodynamics editor is still being
designed, but it will allow the creation
of force and moment components

put by JSBSim. The currently sup-
ported data format is comma sepa-
rated value (csv). More formats may
be supported in the future.

=l that are functions of tables, equa- 7) A planned capability is to allow im-
tions, etc. porting high fidelity aerodynamic data
i e 5) Aeromatic has been converted from a from the files generated by Bill
o e web application to a Wizard for use in Galbraith’s DATCOM+. This data
G 7 creating an initial cut at an aircraft would replace the default data gener-
o/ definition. ated by Aeromatic. [See the article in
i / 6) A plotting tool has been developed the October 2004 issue of this news-
s (this already works) that can be used letter, or on the web site at:

to rapidly plot and analyze data out- www.holycows.net/datcom/ for more

The plotting tool makes analysis information about DAT-

of the JSBSim log files (in comma #* J5BSim Comn =alxl COM+.]
File Tools Hel
separated value format) very - .
quick Qenerallnfurmatmnl Metrlcsl Mass & Balance | Ground Beactions Propulsion |£I|ght Contral Aerudynamlcs! Qutpull
. No release date has
Avallable Engines Subseribed Engines Available Thiusters Tanks
been targeted, yet.
E ngire | | Engines | Thiusters | Thruster | I Tanks
e N =
[a3 B T90-3 Disct 34 30 Dagies Fied Pl oy —
== CFE-B0C243 #= IT90-3 Dirsct 2% Blinch, 2 blade val
= CFM56 #7903 Direct A 4J26-33 Nozzle JT3D-3
F= CFMS6_5 F=TI0-3 Direct 4 Clark ¥ 0,06 thicknt Fiiname [Cieyguinthometjon'SBSim_HML\engine’T90-3 4l
£ FI0 < Clark ¥ 0.08 tie rati = o =
F113Pw1 2 Clark ¥ 0.08 thickne 5
b GE-CFEBIC2ETF = Dircct Location [inches] [1375.000 | [-833.000 | [-47.000
EI GP7270 ES Fised-Pitch 75-nch Aol Fitch i
10320 #% genenc2f 5
B 0350 L e iientation [dearees][00 [oon [om
= og7op Hprop
= 1054048145 M prop Direct
F< JESTE 2 simuiated Clak YA Fianame [E\apguinthomeNortSBSim_hLiengha\drect i
e 73 M %15 A-93 Nozzle ™ % =
L]
e JTADE Location [inches =] [1525.000 | [-&33000 | [47 000
I Meiviv1 650 [Same as enging Roll Pitch Yaw
= PTE27 5
LT Drientation [deqress =] [0.00 Jo.00 [om
e Pu/1258
H _.|J T ol | 7w |
[Mew @ CIearAIIl [New T e |
[\ 4

Fig 2. Above is the Engine editor. Engine/Thruster combinations can be defined here,
and the location of each specific component can be edited, as well. Below, the main
aircraft information editor is shown.

% JSBSim Commander

File Tools Help

General Information |Metrics| Mass & Balance | Ground Eeactionsl Eropulsionl FElight Control Qerodynamicsl gutputl

Aircraft Name |1 970 Boeing 747 1008

Release Level IBETA vI

Author lDarren Jones

File M ame |C:\cygwin\home\ion\JSBSim_XM Lhaircrafth 7474747 xml

Configuration File Yersion |2.U Flight Model Yersion I‘I.D

Email Idarrenpauliones@hotmail.c:om

Orgarizatian Department of Mechanical Engineeril;l Deseription [t adels a 1970 Boeing 747-1008 with Pratt and ‘Whitney JTSD-3
University of Bath, turbofan engines.
UK
4 [
File Date | 3/21/2005 =
References [Ret 10 [Auther | Title Date
Mone Harke, C.R. The Simulation of a Large Jet Tranzport Aircraft, Yol 1l: Mode 1970
Lirnitations |
Aerodynamic effects of undercariage not modelled
ENS] i
Motes [cince 5 moving stabilizer property is not available the speedbrake property iz being uged to emulate the Boeing 747 timmak
Aircraft origin for measurements is the noze.
ENS] i

| 4

http://www.holycows.net/datcom/

News ltems

Rain Mountain Systems Incorporated
(RMSI) is planning to use JSBSim as
an analysis tool during a Phase | SBIR
(Small Business Innovation Research) with
the Air Force Test Pilot School. This SBIR
is for the development of a “personal is-
sue flight test recorder and display” using
PDA with plug-in instrumentation cards.
One of the biggest challenges in this SBIR
is to develop methods for determining the
aircraft state from low resolution, low-
sample-rate instrumentation that might be
carried aboard the test aircraft, and RMSI
plans to use JSBSim to test those meth-
ods.

RMSI also hopes to use JSBSim as an in-
teractive simulation (or as the basis of
such a simulation) to provide an engineer-
ing development and customer demon-
stration tool for methods, approaches,
and display concepts required to imple-
ment this flight test personal data assis-
tant (FT-PDA).

Contact:

Lee Duke, Chief Engineer

Rain Mountain Systems Incorporated
duke@rainmountainsystems.com

A

SBSim version 0.9.7 has been released

on the project web site. This is the last
formal release prior to a major code reor-
ganization, as mentioned in a previous
newsletter. Version 0.9.7 includes
changes to allow JSBSim aircraft to take
off and land on an aircraft carrier.

www.jsbsim.org
A

jidVoIo is a flight simulator based on
JSBSim, and it's mainly a work for a vir-
tual reality course. Careful attention is
given to providing realistic scenery. jidVolo
currently uses Massachussets height
maps since similar maps of Italy (where
jidVolo is developed) are not readily avail-
able.

jidvVolo runs on Linux and on Windows.
You can download jidVolo here:

www.sourceforge.net/projects/jidvolo

SBSim and FlightGear are being used in
early development of the MarsFlight
software.

Red Canyon Software, Inc., a Denver-
based small HUBZone business, specializ-
ing in aerospace engineering services, has
been awarded a contract with NASA Glenn
Research Center. The contract is for the
development of NASA's “MarsFlight” Edu-
cational Software Simulator. The Phase |
software is currently scheduled to be dis-
played at the Paris Air Show this June.

MarsFlight will be an immersive and inter-
active simulation of a remotely controlled
plane that will fly over Mars with the goal
of educating our next generation of explor-
ers. The Mars terrain will be developed
using actual data obtained from the Mars
Orbiter Laser Altimeter (MOLA) which re-
sides on the Mars Global Surveyor (MGS)
satellite - currently in orbit around Mars.
According to the Design and Reference
document released by NASA Glenn Re-
search Center, “Tens of thousands of peo-
ple will use MarsFlight every year at many
national and international exhibits that
NASA participates in. In addition, it is ex-
pected that MarsFlight will be available as
a free download and will be distributed to
educators and schools packaged on a
CDROM.”

“This contract is a tremendous win for Red
Canyon Software, small Colorado compa-
nies and the Colorado aerospace commu-
nity. It reinforces the fact that Colorado
continues to be a leader in space explora-
tion and ranks 4th in the nation in terms
of space dollars,” said Barry Hamilton,
CEO and Founder of Red Canyon Soft-
ware. “The MarsFlight Simulator will sup-
port Red Canyon Software’s mission by
providing school age children a fun and
exciting environment to learn about Mars,
space exploration and robotic missions,
encouraging our next generation of engi-
neers and astronauts, as well as support-
ing space exploration. By choosing the
Space Foundation as our strategic educa-
tional partner for Phase Il of MarsFlight,
we are optimizing the educational value of
the software.” Mr. Hamilton also stated,
“Without the support of our current cli-
ents, Lockheed Martin, Ball Aerospace

(Continued on page 4)

MarsFlight: NASA ARES Plane fly-
ing over Mars’ Valles Marineris (The
Grand Canyon of Mars).

jidVolo flight simulator, view of the
ocean.

New JSBSim aircraft models in-
work, modified, or completed this
quarter (top-to-bottom), Boeing 314,
Lockheed Constellation, Concorde
(screen captures from FlightGear):

http://www.jsbsim.org
http://www.sourceforge.net/projects/jidvolo

Page 4

C# is a strongly-
typed object-oriented
language designed to

give the optimum
blend of simplicizy,
expressiveness, and

performance.

(News: Continued from page 3)

and SEAKR Engineering, we would not
have had the experience and resources to
win this contract”.

Phase | will be completed for Beta testing
no later than May 20th, 2005. Phase Il
will be an enhanced version of Phase |,
including a dynamic topographic/ atmos-
pheric density display and a dynamic
graphic Mars Airplane systems status dis-
play. The Phase Il option is scheduled for
beta testing in April 2006.

www.redcanyonsoftware.com/Mars.pdf

Contact:

Jennifer L. Jones

Director of Business Development
Red Canyon Software

303.520.3906
jenniferjones@redcanyonsoftware.com

Engineers at Strategic Aeronautics,
part of the Virginia SATS team, are
using FlightGear and JSBSim to provide
realistic simulated flight data during devel-
opment of their moving map. The map
provides improved situational awareness
for research of automated sequencing
and separation of high density IFR traffic
into non towered airports. Virginia SATS is
one of several teams researching ad-
vanced aviation technologies under
NASA's Small Aircraft Transportation Sys-
tem program, which will be demonstrating
findings to NASA and the public June 5-7,
2005 at the Danville, VA airport.

http://sats.larc.nasa.gov
http://www.sats2005.com (national SATS
program web site)

A

In Depth: (#, and JSBSim.NET

By Agustin Santos Mendez

“JSBSim.Net” is a port of the JSBSim
Flight Dynamics Model to the .NET run-
time. We have kept the framework similar
in spirit to the original JSBSim while taking
advantage of new features in the .NET
runtime.

Why JSBSim.Net?

It is written entirely in C# and has
been completely redesigned to take ad-
vantage of many .NET language features,
for example custom attributes and other
reflection related capabilities.

C# is a strongly-typed object-oriented
language designed to give the optimum
blend of simplicity, expressiveness, and
performance. The .NET platform is cen-
tered around a Common Language Run-
time (similar to a JVM) and a set of librar-
ies which can be exploited by a wide vari-
ety of languages which are able to work
together by all compiling to an intermedi-
ate language (IL).

The last 10 years has seen a profusion
of language bindings and platforms which
have their own strengths and weak-
nesses, and their own ardent followers.
The problem of maintaining so many dif-
ferent language bindings is non-trivial, es-
pecially with the rate of change of com-

piler releases. The Microsoft .NET frame-
work offers a possible long term solution
to these problems, by allowing a single
product to work well with many different
language bindings, and potentially across
many different platforms. In that way,
JSBSim.Net brings JSBSim to all .NET lan-
guages, including C#, C++ .NET (MC++),
VB.NET, J#, Delphi.NET, Jscript.NET, Lua.
NET, Perl.NET, Python.NET.

Though .NET has been around since
2002, it is still a relatively new techology
for the development industry. By using
the .Net framework as the target platform,
developers can focus more on core func-
tionality and logic, rather than dealing
with the complexities of other languages.

A language is pretty much useless
without libraries. C# has remarkably few
core libraries, but utilizes the libraries of
the .NET framework (some of which were
built with C#). Briefly, the .NET libraries
come with a rich set of libraries including
Threading, Collection, XML, communica-
tions, regular Expression, GUI libraries
(WinForms or GTK#), ... Some of these
libraries are cross-platform, while others
are Windows dependent.

Additionally, .NET has been a windows-
(Continued on page 5)

http://www.redcanyonsoftware.com/Mars.pdf
http://sats.larc.nasa.gov
http://www.sats2005.com

(Continued from page 4)

only platform until just recently with the
1.0 release of Mono, the open-source,
cross-platform implementation of .NET.
Without any extra work on your part, your
application will run on Linux, Mac OS X,
and Windows using any of the following .
NET runtimes: MS.NET or Mono. We're not
yet testing JSBSim.Net on Mono but itis a
development goal.

When you move C++ based code to a
managed environment such as .NET you
can expect some performance loss. We
expect than this performance loss will be

Property System

The JSBSim property system has been
modified using C# capabilities. Using C#
properties (get/set), attributes, and reflec-
tion; it is easy to specify the JSBSim prop-
erty node. An example is shown in Listing
1.

We can also observe the C# documen-
tation tags (similar to Javadoc). Although,
there is no “inline” functionality in C#, this
properties should be treated as inline by
the compiler.

Page 5

minimal, but more perform-
ance tests have to be done.
Project

The new version has sig- | tess | caegories|

B unitTests.nunit - NUnit
File View

Tools Help

nificant features changes,
the more significant ones
are:

- Design and architecture
based on JSBSim.

- 100% C# codebase built
targeting the .Net Frame-
work 1.1.

- Adherence to the best
practices of .Net frame-
work naming standards
and methodologies (i.e.
Use of properties instead
of GetX()/SetX(). Usage
of .Net framework class
library wherever possible.

- Added a new logger sys-
tem called LogdNet. A
new Output capability has
been added using this log-
ger. Now, it is possible to
specify a new output
channel and determine its
format using the Log4Net

=@ C:\Desarrollo\JSBSim\Commor #
- @ CommonUtils
=@ Tests
- @ Matrix3DTests
@ Determinant
~@ MatrixMultiply
@ Transpose
=@ QuaternionTests
@ Construction
- Quaternionindex
@ QuaternionMultiply
@ QuaternionOperator
@ ScalarOperators
=@ Vector3DTests
@ Construction
@ RelationalOperators
@ ScalarOperators
@ ToStringTest
@ VectorOperators
= C:\Desarrollo\JSBSimJSBSimt
-} JSBSIim
= Tesis
=I-@ LoadTests
ChecklLoad_737
CheckLoad_MK32
ChecklLoad2_MK82
CheckLoadnitCond
= RunTests
CheckRun_Ball ==
CheckRun_MK82

FaR] o USSR T U1, V- SHNRY- S S £

A ! ’

Run ‘ CommonUtils.dil

Errors and Failures]Tesrs thRun] Ccnso\e.Errorl Console Out]

CommonUtils.Tests.Vector3DTests.ToStringTest :
string lengths differ Expected length=23, but was length=
strings differ at index 0.

expected: <"Vector3p(0.1, 0.2, 0.3)">

but was

D23

A | %

at NUnit.Framework.Assert.Fail(String message, Object[] arg#
at NUnit.Framework.Assert.AreEgual (Object expected, Object |v
4 | >

Completed

TestCases: 13 Tests Run:13 Failures : 1 Time :0.21875

power (see example De- fig 1 Nunit in action

low).
- Add Serialization capability.
- Regression unit-testing.

- Documentation based on C# comments.
Easy to export XML documentation and
from there on output it via Ndoc or simi-

lar software tools.

Unit

NUnit

is a
framework for all .Net languages. In List-
ing 2 we show how we are using it.

regression unit-testing

(Continued on page 6)

177/
177/
177/
177/

<summary>

</summary>

[ScriptAttribute ("velocities/pt-lbs_sqgft",

Total pressure above is freestream total pressure for subsonic only;
for supersonic it is the 1D total pressure behind a normal shock

public double TotalPressure { get { return pt; }}

Listing 1 Properties

"Total pressure.")]

Page 6

(Continued from page 5)

In this example, we show how the
“ToString test” could fail. In this case, it is
due to a locale-specific format.

are output at arbitrary granularity.

The Log4Net configuration is based in
XML, as shown in Listing 3.

[TestFixture]
public class LoadTests
{

private const String aircraft 737 = "737";

[Test]
public void CheckLoad_737()
{

FDMExecutive fdm = new FDMExecutive () ;

fdm.LoadModel ("aircraft", "engine",

aircraft 737, true);

Assert.AreEqual (aircraft 737, fdm.ModelName);

Assert.AreEqual
Assert.AreEqual
Assert.AreEqual

"MK-82", fdm.Aircraft.AircraftName);
1171.0, fdm.Aircraft.WingArea);
94.7, fdm.Aircraft.WingSpan);

Assert.AreEqual (348.0, fdm.Aircraft.HTailArea);

Assert.AreEqual (48.04, fdm.Aircraft.HTailArm);

Assert.AreEqual (297.00, fdm.Aircraft.VTailArea);

Assert.AreEqual (new Vector3D(80.0,-30.0,70.0), fdm.Aircraft.EyepointXYZ);

Listing 2 Testing

(
(
(
(
Assert.AreEqual (12.31, fdm.Aircraft.WingChord);
(
(
(
(

Log4Net

Use a new logger system called
Log4Net. With log4net it is possible to en-
able logging at runtime without modifying
the application binary. The log4net pack-
age is designed so that log statements
can remain in shipped code without incur-
ring a high performance cost.

At the same time, log output can be so
voluminous that it quickly becomes over-
whelming. One of the distinctive features
of log4net is the notion of hierarchical log-
gers. Using these loggers it is possible to
selectively control which log statements

With the line:

<appender name=...

we specify the output Console target of
our logs. With Log4Net it is possible to re-
direct the output to multiple logging tar-
gets (Files, memory, remote, SMTP, ADO,
UDP, EventLog, ...).

More often than not, users wish to cus-
tomize not only the output destination but
also the output format. This is accom-
plished by associating a layout with an
appender. The layout is responsible for

(Continued on page 7)

<?xml version="1.0" encoding="utf-8" 2>
<configuration>
<configSections>

<section name="logdnet" type="System.Configuration.IgnoreSectionHandler"/>

</configSections>
<log4net>

<appender name="ConsoleAppender" type="log4dnet.Appender.ConsoleAppender">
<layout type="logé4net.Layout.PatternLayout">

<param name="ConversionPattern" value="%-4r %d [%t] %-5p %c - %Sm%n"/>
</layout>
</appender>
<!-- Set root logger level to ALL and its only appender to Al -->
<root>

<level value="ALL" />
<appender-ref ref="ConsoleAppender"
</root>
</log4net>
</configuration>

Listing 3

/>

(Continued from page 6)

formatting the logging request according
to the user's wishes, whereas an ap-
pender takes care of sending the format-
ted output to its destination. We do that
with the line:

<param name="ConversionPattern"
value="%-4r %d [%t] %-5p %c - %m%n" />

And in Figure 2, we show Log4Net and
Nunit working together

Road Map

The C# version is nearing completion,
and we were able to start validating the
output of our standard test programs. Cur-
rent work is concentrated on polishing ex-

B unitTests.nunit - NUnit

Fle Vew Project Tools Help

Tests ‘Ca‘egunei]
CDesarrollo\JSBSim\UnitT ests nunit Run
@ C:\Desarrollo\JSBSim\CommonUiils\bii
= @ CommonUils

CheckLoad_737

= @ Matrix3DTests

Errors and Failures | Tests NotRun | ConsoleError Console.Out |

isting code, removing remaining bugs, and
performance optimizations. Also, some
tests have to be done on Mono and Port-
able.Net frameworks. Once complete,
v1.0 will be released, and I'll begin work-
ing on some additional features:

- Integration with external build
systems, such as Nant

- Scripting functionality, primarily
an integration with Python.

- Flexible plugin architecture for
dynamically extending core functionality at
runtime.

- Integration with a charting library
for .NET. We are studying two alternatives:
Nplot (http://netcontrols.org/nplot/) and
ZedGraph (http://zedgraph.sourceforge.
net).

COX

- @ Tosis IEEEREREENEEEENE NN NN NN EENERERNENENERNEN

® Determinant

.] 2005-04-18 08:58:05,312 [4000] INFO
© MatrixMultiply 15 2005-04-18 08:58:05,328 [4000] INFO
® Transpose 15 2005-04-18 08:58:05,328 [4000] INFO

5 @ QuaternionTests 31 2005-04-18 08:58:05,343 [4000] INFO
& consin S0 2005 0iis oeiseios.ais (4000] meeo
s 04~ :58: NFO
pe :
= Qua'emm‘&d?‘ 46 2005-04-18 08:58:05,359 [£000] DEEUG
® QuaternionMuftiply 46 2005-04-18 08:58:05,359 [4000] INFO
@ QuaternionOperators 46 2005-04-18 08:58:05,359 [4000] INFO
® ScalarOperators 46 2005-04-18 08:58:05,355 [£000] DEBUG
5 @ VectordDTests 46 2005-04-18 08:58:05,359 [4000] INFO
& corsiiin 46 2005-04-18 08:58:05,359 [4000] DEBUG
§ | ctistonadCperiion 46 2005-04-18 08:58:05,353 [4000] INFO
- th 46 2005-04-18 08:58:05,359 [£000] INFO
@ ScaarOparalors 46 2005-04-18 08:58:05,359 [4000] INFO
® ToStringTest i6 2005-04-18 08:58:05,355 [£000] DEBUG

Reading Aircraft Configuration File: 737

LoadTests Version: 1.65

[CheckLoad_737]
CheckLoad_MK82
CheckLoad2_MKg2
CheokLoadinitCond_MKa2

Current version needed is: 0.0
You have version: 1.65

< 3| |«

JSBSim.FDMExecutive (] - JSBSim Flight Dynamics Model v -~
JSBSim.FDMExecutive [] - JSBSim version [cfg file spec v 0.0]
JSBSim.FDMExecutive [] - JSBSim startup beginning ...

JsBSim.Model [] - Model Base Class
J9BSim.Model [] - Model Base Class
JSBSim.Model [] - Model Base Class
JSBSim.Rerodynamics [] - Instantiated:

JsBSim.Model [] - Model Base Class
gsBSim.bModel [] - Model Base Class

JSBSim.GroundReactions [] - Instantiated: GroundReactions.
35BSim.Model [] - Model Base Class

JSBSim.Inertial [] - Instantiated: Inertial.

JSBSim.Model [] - Model Base Class

JsBSim.Model [] - Model Base Class

JsBSim.Model [] - Model Base Class

406 2005-04-18 08:58:05,718 [4000] DEBUG JSBSim.RAircraft [] - Loading Aircraft:
406 2005-04-18 08:58:05,718 [4000] DEBUG JSBSim.RAircraft [] - Loading Rircraft

CDesarrollo\JSBSim\SimGearlbin\Det | 406 2005-04-18 08:58:05,718 [4000] DEBUG JSBSim.Aireraft [] - Loading Airer
406 2005-04-18 08:58:05,718 [4000] DEBUG JSBSim.Rircraft [] - Loading Rircraft:
406 2005-04-18 08:58:05,718 [4000] DEBUG JSBSim.Rircraft [] - Loading Rircraft

iliary [] - Instantiated: Auxiliary.
i

® VectorOperators 46 2005-04-18 08:58:05,355 [4000] INFO JSBSim
C\Desarrollo\JSESIm\JSESim\bin\Deb | [46 2005-04-18 08:58:05,359 [4000] DEBUG JSBSim.Aircraft [] - Instantiated: Aircraft.
JSBSim 105 2005-04-18 08:58:05,421 [4000] INFO JSBSim.Model [] - Model Base Class
Snid 105 2005-04-18 08:58:05,421 [4000] INFO JSBSim.Model [] - Entering Run() for model Atmosphere

YOU HAVE AN INCOMPATIBLE CFG FILE FOR THIS ATRCRAFT. RESULTS WILL BE UNPREDICTABLE !!

tag=AC_WINGAREA value= 1171.0

RunTests 406 2005-04-18 08:58:05,718 [£000] DEBUG JSBSim.AizczaZs [] - Loading Adrcraft CHORD value= 12.31
CheckRun_Ball 406 2005-04-18 08:58:05,718 [4000] DEBUG JSBSim.Aircraft [] - Loading Aircr HTAILAREA value= 348.0
CheckRun_MK82 406 2005-04-18 08:58:05,718 [4000] DEBUG JSBSim.Aircra £t [] - Loading Aircr. HTATLARM value= 48.04

_VIATLAREA value= 297.00
"LV value= 44.50
'’ IXX value= 562000.0

Ready

TestCases: 1

Fig. 2 Log4Net and Nunit working together.

Scripting JSBSim

The scripting feature of JSBSim is
made up of language elements that allow
for AND and OR conditional tests to be
built up and for one or many actions to be
taken when the condition[s] evaluates to
true. The value of scripting is realized any
time a repeatable set of conditions needs
to be performed for testing or analysis, or
when checking the response of the simu-
lation code to a given test condition during
debugging.

A JSBSim runscript is made up of a ref-
erence to an aircraft and a set of initial
conditions, to a start and stop time, the

integration time constant, and to any num-
ber of conditional tests and actions speci-
fications. The script always starts like this
(using the Cessna 172 as an example):

<?xml version="1.0"?>

<runscript name="C-172 takeoff run">
<use aircraft="cl72">
<use initialize="reset00">

Above, we see the xml version specifi-
cation, the name of the script, an optional
comment, and the specification of the air-
craft and initialization file to use.

(Continued on page 8)

Page 7

The value of scripting is
realized any time a
repeatable set of
conditions needs to be
performed for testing or
analysis, or when
checking the response of
the simulation code to a
given test condition

during debugging.

http://netcontrols.org/nplot/
http://zedgraph.sourceforge

Page 8

(Scripting JSBSim, Continued from page 7)

The real work is done in the run sec-
tion:

<run start=0 end=100 dt=0.1">
[directives]
</run>

Here, we see that the script is de-
signed to run from O to 100 seconds total
elapsed time with a time step of 0.1 sec-
onds.

The directives section contains the ac-
tual conditional tests and actions to be
performed. A directive specifies an action
to be taken when a condition occurs. The
statements that comprise the directive are
wrapped in a <when></when> block.
There are two required statement types
within the directive “when” block: condi-
tions and actions. A condition is specified
as follows:

<parameter name={property}
comparison={logical operator}
value={value}/>

{logical operator} is one of the following:

le less than or equal to

It less than

ge greater than or equal to
gt greater than

eq equal to

ne not equal to

{value} is the numeric value to make the
comparison with.

An action to be taken is specified as fol-
lows:

<set name={property}
type={value type}
action={change type}
persistent={Boolean}
tc={time constant}/>

where property is as before (see above),
and type is one of:

FG_DELTA an offset from the current
actual value

FG_BOOL a boolean

FG_VALUE the actual value to be used

The action is one of:

FG_EXP An exponential change to
the new value

FG_RAMP The old value ramps line-
arly to the new one

FG_STEP The new value immediately
takes effect

The “persistent” item is set true or
false, and this setting determines whether
or not the trigger (set of conditional
checks) would be reset once it becomes
inactive (evaluates to false) and would be
automatically reused. Set “persistent” to
true if you would like to reuse this trigger
indefinitely. The “t¢” parameter is a time
constant used to specify at what rate the
new setting should be faded in. This is im-
portant for the ramp and exponential ac-
tions, but is meaningless for the step ac-
tion. In actual practice, a “when” clause
might look something like this:

<when>
<parameter name="sim-time-sec"
comparison="ge" value="0.25"/>
<parameter name="sim-time-sec"
comparison="1le" value="0.50"/>
<set name="fcs/aileron-cmd-norm"
type="FG_VALUE" value="0.25"
action="FG_STEP" persistent="false"
tc ="0.25"/>
</when>

This says: “We define an event to take
place when the simulation time is be-
tween 0.25 and 0.50 seconds, and when
that happens, we set the aileron com-
mand (normalized value between -1 and
+1) to 0.25 via a step, immediately chang-
ing the value - the tc item is ignored (but
still needed in the current version of
JSBSim, prior to rev. 2.0 of the configura-
tion file format).”

Complicated sets of conditions and
actions can be constructed and together
with an autopilot can run sets of tests.

There will be some changes in script-
ing as we move to v2.0 of the configura-
tion file format. Among them will be the
addition of defaults for some of the set
tings. For instance, in the set statement,
the persistent parameter will default to
true, the value type will default to
FG_VALUE, and the action will default to
FG_STEP. Providing defaults will clean up
the scripts considerably. There is also a
probablity that the new JSBSim Com-
mander application will feature a script
editor, further simplifying the process of
creating a script.

A

Decoupling, Generalizing, and Isolating Commands and

Effectors in the JSBSim FDM

The only thing that aerosurface or any
other "effector" commands are useful for
within JSBSim is to allow the aerodynam-
ics algorithms and propulsion systems to
determine the forces and moments to ap-
ply to the aircraft. There is no direct inter-
action, for instance, between control in-
puts and the atmosphere model, or with
the equations of motion. Ground reactions
are affected slightly by control settings - if
the gear is up, the aircraft belly-lands.

Externally supplied control inputs can
be handled in two ways in JSBSim: they
can directly set the aerosurface position,
gear position, throttle position, etc. (which
directly affects the aerodynamic forces
and moments that will be applied to the
aircraft), or they can set representative
“interface properties” which can in turn be
used to set effector commands, which are
used to determine effector positions -
either by direct assignment, or after being
processed by the flight control system.

Control inputs from the pilot perspec-
tive (or script, or other user interface) are
either “normalized analog” or “normalized
binary”. For instance, the traditional joy-
stick inputs, pitch command, roll and yaw
commands, are analog inputs. These ana-
log inputs range from -1 to +1. An exam-
ple of a binary input is the gear deploy-
ment setting (it's one or zero, though it
can transition through any value between
the two). The flight control system sets up
scaling of the normalized control inputs to
the values expected by the aerosurface or
by the control laws. For instance, the pitch
control laws might expect stick force as
input ranging from -25 to +25 pounds.

Some aircraft models may not have
spoilers. Some may not have deployable
gear. Many aerospace craft have different
types and number of engines that propel
them. Yet, the superset of possible aero-
surfaces is mostly hardcoded in JSBSim.
That is, there are class members and ac-
cess functions that represent elevator,
rudder, spoiler, flap, aileron, speed brake,
etc. A more recent change to JSBSim also
gives storage space and access methods
to autopilot commands and settings attrib-
utes (for internal and scripted use, that

is - FlightGear has its own autopilot
mechanisms). All these properties, mem-
bers, and access functions have bloated
the FCS code, perhaps needlessly.

With the propulsion system, there can
be any number of engines, and even dif-
ferent types. There has been a discussion
about how to name the propulsion proper-
ties. The general consensus reached is
that propulsion system properties should
be named as follows (for example):

propulsion/engine[0]/throttle
propulsion/engine[0]/starter
propulsion/engine[0]/advance-ratio

The above naming convention, how-
ever, introduces a problem, because be-
ginning with v2.0 of the configuration file
format, the generic propeller model can
define a function for the thrust and power
coefficients. The function may be a table,
which may list a property as an independ-
ent variable. That property name cannot
be specific to an engine, e.g. propulsion/
engine[l]/advance-ratio. So, a trick must
be done: within an engine or thruster defi-
nition file, property names must be non-
engine-specific. The code determines
which engine to take the value of a prop-
erty from. For propellers, the advance ratio
must be known to determine the thrust
coefficient. In the propeller configuration
file, the advance ratio is referenced, pro-
pulsion/advance-ratio. For a multi-engine
aircraft, the propulsion code figures out
the correct advance ratio to use when de-
termining the thrust coefficient for a spe-
cific engine.

A new feature has been added with the
latest (v2.0, pending) release of JSBSim
that could simplify the complement of
Flight Control System properties. Interface
Properties are properties that are speci-
fied in the flight_control section of the
configuration file, and which serve to ac-
cept commands when running a JSBSim
script, or which can also be used by the
FGInterface-derived FGJSBSim class in
setting control inputs. Interface Properties
can be used as the “glue” between the
JSBSim FCS and the external, controlling

(Continued on page 10)

Page 9

Page 10

Hi'g}ﬂi*ghtetl
Feferences

Online.:

Boeing 314, Flying Clipper
www flyingclippers.com/B314.html
www.boeing.com/history/boeing/m314.html

Lockheed Constellation
www.airliners.net/articles/read.main?id=48
www.connie.com/
www.aviation-history.com/lockheed/1049.html

Concorde
www.britishairways.com/concorde/index.html
www.aeroflight.co.uk/types/international/
aerospat-bac/concorde/concorde.htm

Lunar Landing Research Vehicle
http://www.astronautix.com/craft/apoollrv.htm

Lunar Landing Research Vehicle
(Image: NASA)

Visit us on the web at:
www.jsbsim.org

(Continued from page 9)
application.

Theoretically, in the case where
JSBSim is being driven by an internal
script (in standalone mode apart from a
flight simulation application such as Flight-
Gear), the flight control system class
FGFCS would need no direct, hardcoded,
attributes or access methods for aerosur-
faces. An interface property could be
specified in the configuration file, for in-
stance, as an elevator command: “fcs/
elevator_cmd”. The flight control laws as
laid out in the flight_control section of the
configuration file would take that property
(“fcs/elevator_cmd”) as an input, process
it, and the last component in the string
could set another interface property that
represents actual aerosurface position.
The aerodynamic characteristics specifica-
tion in the configuration file would refer to
the latter interface property when deter-
mining the force and moment contribution
for that aerosurface.

That all seems cut and dried, but there
are more factors to consider. In a full-
featured simulation such as FlightGear,
the FDM may not only need to supply air-
craft state values (position, orientation),
but also aerosurface positions for pur-
poses of animation. Also, in the case
where JSBSim is used as the flight model
for another flight simulation application,
the main application may not want to use
the property system - it may want to use
specific function calls to set and get aero-
surface positions.

At this point a decision needs to be
made. Should both the property system
and coded access methods be supported?
An investigation will soon be done to de-
termine if the property system can act
alone as the method for providing control
inputs to JSBSim aircraft flight models.
This area of the design is still being de-
bated.

A

Simulate This! The Lunar Landing Research Vehicle

The Lunar Landing Training Vehicle (LLTV) is a free-flight vehicle consisting of a tubu-
lar frame on which a crew station, jet engine, lift rockets, attitude control rockets, con-
trol electronics, and associated equipment are mounted. The gimbaled jet engine, which
is mounted vertically, provides main power for takeoff and supports five-sixths of the
weight of the vehicle during simulation of the lunar environment. The remaining one-
sixth is lifted by two 500-pound maximum thrust, throttleable lift rockets to simulate the
Lunar Module descent engine. The cockpit includes a Lunar Module three-axis attitude

control assembly, the throttle for the lift
rockets, a horizontal velocity indicator, the
altitude-rate tape indicator, and a thrust-to-
weight indicator. Although the pilot of the
Lunar Landing Training Vehicle was seated
because of the necessity for a rocket-
propelled ejection seat, the location of the
flight instruments and controls relative to
the pilot's hand and eyes was similar to
that in the actual Lunar Landing Module.

About this newsletter ...

“Back of the Envelope” is a new com-
munication tool written for a wider audi-
ence than core JSBSim developers, in-
cluding instructors, students, and other
users. The articles featured will likely
tend to address questions and comments
raised in the mailing lists and via email. If
you would like to suggest (or even author)
an article for a future issue, please email
the editor at: jsb@hal-pc.org.

http://www.flyingclippers.com/B314.html
http://www.boeing.com/history/boeing/m314.html
http://www.airliners.net/articles/read.main?id=48
http://www.connie.com/
http://www.aviation-history.com/lockheed/1049.html
http://www.britishairways.com/concorde/index.html
http://www.aeroflight.co.uk/types/international/
http://www.astronautix.com/craft/apoollrv.htm
http://www.jsbsim.org

