
JSBSim, XSL Transformations, and XML Schemas
The official, current, file will always be kept
there (as well as in JSBSim cvs).

It may not be clear what can be offered by the
use of an XSL transformation file. An
example would be useful. In your web
browser, try opening this file:

http://jsbsim.sourceforge.net/f16.xml

What you download is the straight, JSBSim
F16 configuration file. At the top of that file is
this stylesheet reference line:

<?xml-stylesheet type="text/xsl"
href="http://jsbsim.sourceforge.net/
JSBSim.xsl"?>

This line causes
the browser to
read the
stylesheet and
process the
target file (f16.
xml), resulting in
the display you
(hopefully) see
in your browser
(see image at
left). The
resulting
displayed file is
much more
readable than the
original XML
file – which is of
course not meant
to be easily
human readable,
but application
parsable. Most
browsers support
XSL
transformations.

A future version of the transformation might
apply to any data tables used in the
configuration file. It is hoped that by
employing SVG (Scalable Vector Graphics),
the data tables might be displayed using

(Continued on page 2)

The use of XML to specify configuration files
for applications makes sense in many ways. It
also opens up a wider variety of technologies
and applications, ready made for use. This
article will discuss some of those.

XSL Transformation

The eXtensible Stylesheet Language is an
XML-based language used to write stylesheets
used for transforming XML documents from
one form into another. One can write a
stylesheet that allows for processing each
element in the target XML document and
outputting HTML code that displays the
element in a more friendly, useful, and
appealing way.

Over the past couple of months a preliminary
JSBSim XSL transformation has been written.
It is called “JSBSim.xsl”, and it is available at
the JSBSim web site at:

http://jsbsim.sourceforge.net/JSBSim.xsl

Inside this issue:
JSBSim,
XSL Transformations,
and XML Schemas

1

News Items 3

Turboprop Engine Model 5

JSBSim in Use 8

Simulate This! 8

The quarterly newsletter for
JSBSim, an open source flight

dynamics model in C++

Big News. See Page 3.

 15 JANUARY 2006
VOLUME 2, ISSUE 4

http://jsbsim.sourceforge.net/f16.xml
http://jsbsim.sourceforge.net/JSBSim.xsl"?
http://jsbsim.sourceforge.net/JSBSim.xsl"?
http://jsbsim.sourceforge.net/JSBSim.xsl

(Continued from page 1)
graphs instead of simply presenting the data
tables by themselves.

XML Schema

Another capability that can be taken
advantage of is in validation of XML files
using some kind of formal file definition.
The allowable format for an XML file (for
example an aircraft or engine configuration
file) can be defined in a Document Type
Definition (DTD), or an XML Schema. A
Schema defines what kinds of elements can
be expected in a file, and the data type of the
elements. A Schema can even set limits on
the numeric values expected in an XML file.
For example, an XML Schema definition of
the Wing Area element in a JSBSim config
file is presented in the listing, below.

This definition states that there must be an
element wingarea in a file, that it can take
the value of any positive number, and that
the element definition may optionally
include an attribute that defines the units
that the value is expressed in. There is a
default unit of FT2 (square feet).

Currently, the XML parser used by JSBSim
(easyXML, a part of the SimGear library,
based on eXpat) does not support on-the-fly
validation of input files. However, there are
several web sites that provide a tool to
validate files. Two online validators are:

http://apps.gotdotnet.com/xmltools/xsdvalidator/
http://tools.decisionsoft.com/schemaValidate.html

It may be possible to adapt easyXML to do
validation at the time the XML files is
parsed. Whether this is desirable, or
efficient, is questionable.

Another luxury afforded by the use of some
XML editors (such as OxygenXML, the tool
this author used to create the JSBSim XSL
transformation stylesheet as well as the
XML Schema) is the automatic generation
of documentation for the XML file. As seen
in the above example, there are “annotation”
and “documentation” elements that can be
embedded in the Schema. OxygenXML uses
these two generate documentation for the
JSBSim XML configuration file, as defined
by the XML Schema file. The
documentation will be online in the near
future, and Schema and documentation files
will also be added for the various other
JSBSim files (engines, propellers, etc.).

Using a schema to check a config file prior
to using it will provide a good level of error
checking and reduce frustration at runtime.

For more information on XML technolo-
gies, visit the World Wide Web Consortium
(W3C) web site at:

http://www.w3.org/

There, you will find the current standard and
draft standards for many technologies in-
cluding SVG, XML Schema, and XSL
Transformations.

Another wonderful web site for being in-
structed in XML technologies is the W3
Schools web site here:

http://www.w3schools.com/

Finally, there are several high quality XML
editors. Two of them are:

http://www.oxygenxml.com
http://www.stylusstudio.com/

Page 2

Edited by Jon Berndt

“Back of the Envelope” is a
communication tool written
generally for a wider audience
than core JSBSim developers,
including instructors, students,
and other users. The articles
featured will likely tend to
address questions and
comments raised in the mailing
lists and via email. If you
would like to suggest (or even
author) an article for a future
issue, please email the editor at:

Jon@jsbsim.org

About this
newsletter ...

<!-- Wing Area -->

<xs:element name="wingarea">
 <xs:annotation>
 <xs:documentation>
 Wing area (reference area) for the vehicle
 being modeled. The default unit is square feet (FT2).
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="PositiveNumber">
 <xs:attribute name="unit" use="optional" default="FT2" type="AreaType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

http://apps.gotdotnet.com/xmltools/xsdvalidator
http://tools.decisionsoft.com/schemaValidate.html
http://www.w3.org
http://www.w3schools.com
http://www.oxygenxml.com
http://www.stylusstudio.com
mailto:Jon@jsbsim.org

Landing Gear Model Changes Eliminate Jitter

The long-suffered problem of unstable
ground reactions while at low or zero velocity
appears to have been solved. The problem
had been particularly apparent when using
JSBSim as the selected FDM (flight dynamics
model) in FlightGear.

Several steps were taken to fix the problem:

• The code was reviewed and reorganized to

be more concise and easily readable.
• The use of winds and turbulence while at

rest on the runway has been eliminated.
Winds and turbulence are now slowly
ramped in as aircraft velocity increases.
This is fine, as it is assumed that the land-
ing gear ground forces will match wind and
turbulence forces, anyhow, resulting in no
movement.

• Centrifugal acceleration due to the rotation
of Earth is not incorporated into the total
aircraft forces and moments calculations
until the aircraft leaves the runway. Again,
the end effect is that the landing gear seems
to counter that small acceleration.

• At low and zero velocity, the slip angle of
the tire is assumed to be the steering angle
of the wheel.

• A precise filtering of steering angle is ap-
plied in order to reduce noise due to small
motions. This filter is tuned for the opera-
tion of the flight model at 120 Hz – the rate
that FlightGear calls JSBSim. Any other
FDM frame rate may result in noise and
jitter. This is being investigated in the hope
of making the filter operate for all FDM
frame rates.

• Side and rolling forces produced by the
landing gear are ramped out at very low
velocities and as zero is approached.

• Side and rolling forces are filtered to re-
duce noise.

This combination of carefully selected tech-
niques has been tested in operation within
FlightGear and has shown that several aircraft
ranging in size from the C-172 to the B747
now show rock-solid operation on the runway
at any velocity.

“New” JSBSim moving to FlightGear

As I write this the new JSBSim code – over a
year in the making – is on its way into
FlightGear CVS. This is a critical move prior

Page 3

to the release of FlightGear v1.0, as well as
for the subsequent release of JSBSim v1.0.
Despite a year’s worth of testing in the
standalone mode, the inclusion of “new”
v0.9.10 JSBSim into FlightGear will surely
not be flawless. Many things have changed,
and there will be growing pains.
Documentation outlining the new v2.0
JSBSim config file format is not quite ready.

But, it will be worth the struggle. JSBSim
will be incorporating many new technologies
in this release, afforded by the improved con-
figuration file format. Among the new fea-
tures (some have been mentioned in previous
newsletters):

• A telnet control interface has been added,
• Functions can be specified in the flight

control and aerodynamics sections,
• A sensor class has been added, complete

with malfunctions,
• Propeller operation has been improved

Off-Standard Atmosphere Temperature Sup-
port Added

JSBSim can use either an internal atmosphere
model or an externally supplied one, which-
ever the user decides. The internal model is
based on the U.S. Standard Atmosphere of
1959. As with any standard atmosphere
model the atmosphere depicted does not re-
flect the wide variations in temperature, pres-
sure and density that one would encounter in
the real world. Of particular concern is the
lack of off-standard temperature, since air-
craft and aircraft engines can be greatly ef-
fected by temperature. A good simulation
environment will allow you the flexibility to
set up a run at Mexico City at 100 degrees
Fahrenheit, for example, since many aircraft
would be unable to take off under that kind of
real-world condition.

JSBSim provides users with the ability to set
off-standard temperatures in two ways. The
simplest way is to set a delta-T value in the
property "atmosphere/delta-T", or by calling
the method FGAtmosphere::SetDeltaT(). Re-
member that the Rankine scale is used by
JSBSim internals, so delta_T should be in
Rankine or Fahrenheit. When set this way
the delta_T will be applied at all times during
the simulation run. This is a good way to

(Continued on page 4)

News Items

David Culp’s new F-80C model
in-flight.

Page 4 (News, Continued from page 3)
lock in a desired delta_T for use in a constant
altitude run, or for a run with a moderate
range of altitudes. The fixed delta_T would
not provide a realistic model for the whole
atmosphere.

To get a more realistic model of off-standard
temperature deviations there is a second
method of setting up the off-standard tem-
perature. This can be done by setting the
property "atmosphere/T-sl-dev-F", or by a
call of FGAtmosphere::SetSLTempDev().
This will apply the deviation to an altitude of
zero (sea level) and then decrease it linearly
until the standard tropopause altitude (about
36089 feet in the 1959 Std. Atmosphere).
This method is best used for a simulation run
which needs a more realistic off-standard
temperature profile for the whole atmosphere.

If you
wanted to set
up a simula-
tor run to
test, say,
takeoff per-
formance at
Mexico City
at 100 de-
grees Fahren-
heit, then the
first method
shown above
would be the
best to use.
If you
wanted to
look at take-
off and climb

to cruise altitude, then the second method
would be best, but you'll have to do some
prior calculation first. Since the second
method applies the supplied temperature de-
viation to sea level, you'll have to figure out
what sea level temperature would result in a
temperature of 100 degrees Fahrenheit at the
altitude of the Mexico City airport. The stan-
dard day temperature at MMMX (elevation
7341 feet) is 492.5 degrees Rankine. You
want the temperature to be 560 degrees
Rankine (i.e. 100F) which is a local deviation
of +67.5 . You need to set the sea level de-
viation to:

(67.5 / (36089 - 7341)) * 36089 = 84.7

Thus setting T-sl-dev-F to 84.7 will result in a
temperature of 100F at 7341 feet, and provide
you with a linearly decreasing temperature
deviation until reaching standard tropopause

height, above which standard temperatures
will apply.

If you are using turbine engines, please en-
sure that the thrust look-up table in the engine
configuration file is indexed using the prop-
erty "atmosphere/density-altitude", rather
than "position/h-sl-ft". Also ensure that you
have a column for negative altitudes if you
wish to model thrust gains due to lower-than-
standard temperatures.
Turbine configuration files generated by
AeroMatic, JSBSim's web based configura-
tion tool, include these items.

Lockheed F-80C “Shooting Star” Aircraft
Model Fielded

A recent addition to the JSBSim stable of
aircraft is the Lockheed F80-C Shooting Star,
the first production jet fighter in the US. It
first flew in 1944 and was built around the
turbine engine designed by Sir Frank Whittle.
There were many obstacles to overcome in
getting the airplane into operation with the
Army Air Corps, including needed fixes for:
engine ingestion of the forward fuselage
boundary layer, unreliable engine compo-
nents, unreliable fuel supply chain, and a lack
of adequate pilot and maintenance training
for jet operations.

By the time these fixes were in the Shoot-

ing Star was already obsolete, as German ad-
vances in high-speed aerodynamics became
known outside of Germany after the end of
the war. The F-80's replacement, the North
American F-86, incorporated the new aerody-
namics and first flew in 1947. Unbeknownst
to the West, the Soviet Union had also ac-
quired the new aerodynamics technology, and
had used it in the design of the MiG-15,
which also made its first flight in 1947. The
problem with the F-80's design was high tran-
sonic drag, which limited it's speed to about
500 knots. This prevented it from being used
as an air combat fighter, however it served
well as a fighter-bomber, and was spectacu-
larly successful as a jet trainer in its two-seat
form, the T-33.

Flying the simulated F-80C will demonstrate
some of the quirks of the real aircraft. It was
underpowered, by modern standards, so ac-
celeration and climb performance were
merely adequate, however it was a very clean
airplane and hard to slow down once it got
going. The engine gulped fuel, limiting the
F-80's range. The engine was also slow to
accelerate because of the large inertia in its
centrifugal compressor.

Page 5

Concepts and Design

A turboprop (abbreviation of turbine and
propeller) engine is a turbine engine that
powers a propeller. It is a "subclass" of the
turboshaft engine – a turbine engine
that is powered by means of shaft, for
example a helicopter rotor or an electric
generator. A turboshaft or turboprop
engine has at least one of the turbine
spools connected to an output shaft.
The turbine stage that powers the
output shaft is called a free or power
turbine. Because the turbine speed is
much greater than the propeller speed,
there is a speed reducer (gear box)
included between the turbine and the
propeller.

One of the basic characteristics of a
turboprop engine is the number of shafts and
the number of compressor and turbine
stages. The compressor is powered by one
or more turbine stages. This consumes a
large portion of the turbine power. The
remaining energy is used for the free turbine
and powers the propeller. The compressor
and the connected turbine are called a gas
generator. The rest of the kinetic energy of
the gas usually remains on the exhaust
outlet. This energy can be used for
additional thrust, but the power is usually
not significant in comparison with the
propeller thrust.

Figure 1 shows a "classic" turboprop
concept with two concentric shafts. The
outer shaft connects the generator
(compression) turbine with an axial
compressor; the inner shaft transmits the
motion from the two stages free turbine to
the speed reducer (gear box). Between the
compressor and the turbine is – like in an
ordinary turbine engine, a combustion
chamber. Because this concept has some
disadvantages, many other configurations

are used. Another concept with two shafts is
introduced in figure 2. The compressor has
two axial stages and one centrifugal stage
and is powered by one turbine stage. A one
stage free turbine powers the gearbox.

Interesting in this concept is the fact that the
airflow in the engine is opposite to the flight
direction. The air
inlet is at the back
and the exhaust
outlet is in the front.
This concept is used
for the Walter M601
engine and also
(with a three stage
axial compressor)
for the Pratt &
Whitney PT6. In
figure 3 we see an
example of a three-
shaft engine. There
are three concentric

shafts used. The outer shaft is powered
by the first turbine stage and is
connected to the second centrifugal
compressor. The middle shaft connects
the second turbine stage with the first
centrifugal compressor. This concept
is used for the PW100 series of
engines from Pratt & Whitney.

Turboprop engines are usually used
with constant speed propellers. These
propellers have variable pitch

controlled by a regulator so, that the speed
of the propeller (and thereby the speed of
the free turbine) is constant for ordinary
modes. The variable pitch also enables
reversing for braking after landing and
feathering. Feathering means setting the
propeller pitch so that the drag in the
direction of flight is minimal. It is used
when the engine doesn't operate during the
flight (in the case of malfunction, etc.). It is

(Continued on page 6)

Turboprop Engine Model
Jiri Javurek

Fig. 1 Two shaft turboprop engine.

Fig. 2 Two shaft turboprop engine.

Fig. 3 Three shaft turboprop engine.

Page 6 (Continued from page 5)
also possible to use small
pitch angles for slow taxiing.
In diagram 5 is the table for a
variable pitch propeller from
the propeller configuration
file in graphical form.

Controlling the Turboprop
Engine

In the cockpit are two levers.
A throttle lever and a
propeller control lever. A
Turboprop engine uses two
regulators. The first is called
the fuel regulator. It sets the
needed fuel quantity, so the
generator speed corresponds
to the throttle lever position.
The second regulator sets the propeller pitch, so the propeller RPM reaches the value set by
the propeller lever. The throttle lever is also used for propeller reversing and for small angle
setting (called beta range). In this range the fuel regulator is joined to the propeller
regulator, and this lever sets the propeller pitch. Moving the lever in the opposite direction
from full throttle sets Beta range and reverse.

The propeller lever is used for feathering and also for decreasing RPM.

When we decided to make the L410 Turbolet for FlightGear our problem was
that although JSBSim offered very good aerodynamic modeling, there were only
piston and turbine engine models available. The connection of a propeller to the
turbine engine didn't work properly (and was not designed for that purpose).
Therefore, we decided to rewrite the turbine engine for use with a propeller and
include the simulation for small two-shaft engines. It should accurately model
engines with power up to 1500 HP.

At first we collected information about the engine regulation and controlling. We
have got some parameters and diagrams that describe the engine behavior of the
Walter M601 engine. The first diagram (diagram 1) shows how the power
depends (for the constant air pressure or flight level) on the generator speed (i.e.
throttle lever position), and on the shaft RPM. These dependencies are shown in
diagram 1. The next diagram (diagram 2) shows the dependency of the power on
flight level and flight speed for constant generator speed. This diagram exists for
every important regime (take-off, maximum cruise, and so on). The values from
diagram 1 and diagram 2 were used for tables
ENG_POWER_COEF_AIRPRESSURE_AIRSPEED and
ENG_POWER_RPM_N1. The values from these tables are shown in diagrams 3
and 4.

The binding between the throttle lever and the generator turbine speed is at this
moment done only by a simple exponential function. This is exact enough for
slow changes (as specified in the pilots guide), but does not simulate the effects
of fast throttle changes.

The input parameters are:

• Position of throttle lever - number (The interpretation depends on the Reversed flag. For

reversed propeller this is the maximum power reverse and although the engine runs in
the same direction, the throttle lever is set to the opposite side),

• Reversed - boolean

Diagram 1 Power dependency.

Diagram 2 Power dependency.

• Cutoff - boolean
• Start - boolean
• Shaft RPM (i.e.

propeller RPM)

The outputs are:

• Power [HP]
• Oil temperature
• ITT (Inter-turbine

temperature)
• Fuel flow
• N1 (generator speed)

[%]
• Starting - boolean
• IELU intervent

(Integrated Electronic
Limiters Unit) -
boolean

Note:

The IELU unit evaluates
important parameters
(generator speed, propeller
RPM, ITT and the torque
on the propeller shaft. If
one or more parameters
run out of the limits, the
fuel flow is reduced to
avoid engine damage (only
torque limiting is modeled
now.)

The following are the
parameters for specifying
a turboprop engine in the
configuration file:

maxpower — maximal power [HP]
idlefuelflow — idle fuel flow
psfc — power specific fuel consumption
n1idle_max_delay — time constant for
throttle lever and generator speed
dependency,
maxstartingtime — time for automatic start
startern1 — [%] generator speed for
starting
ielumaxtorque — max. allowed torque on
the propeller shaft
itt_delay — time constant for ITT
temperature calculation
betarangeend — deg
reversemaxpower — [% of maxpower]

Tables:

EnginePowerVC (see diagram 3)
EnginePowerRPM_N1 (see diagram 4)
ITT_N1 — dependency between generator

Page 7

Diagram 4

Diagram 3

speed and ITT temperature

New parameters in the propeller
configuration file:

reversepitch — pitch for reversing

We have written configuration files for the
Walter M601 engine and used it for the
FlightGear flight simulator.

Future improvements:

Better modeling of fast changes.

The SOBEH Foundation
(Stichting voor de Ontwik-
keling en Bouw van een Experi-
menteel Hefschroefvliegting)
was established in the early
1950s to research and build
small ramjet-powered helicop-
ters designed by J. Meyer
Drees. The SOBEH-1 helicop-
ter, which flew in 1954, was an
open-frame single-seat machine
with a skid undercarriage. Two
small ramjets were fitted at the
tips of the two-blade rotor,
which embodied an automatic
pitch adjustment system, and
the pilot controlled the machine
through a suspended overhead
stick The SOBEH-1 was writ-
ten off through ground reso-
nance, but was succeeded by
the SOBEH H-2 (PH-NFT)
which was flown in May 1955.
The H-2, was an improved ver-
sion with a large windshield
and a tiny strutted tail unit with a small anti-torque propeller. It was taken over by Neder-
landse Helicopter Industrie N.V. which was formed by Aviolanda and Kromhout and based
at Rotterdam, and they refined the design into the two-seat NHI-3 Kolibri.

The first NHI-3 (PH-NHI) flew in May 1956, and featured a more substantial cabin enclo-
sure and a stronger tail unit. The power units were two 55hp NHI TJ-5 ramjets but these
were upgraded to the more powerful 100hp TJ-5A in production aircraft. The main role for
the Kolibri was in crop spraying, for which role it had spray tanks mounted beneath the fuse-
lage floorpan with standard spray bars. An initial production batch of ten aircraft was initi-
ated in 1958 for customers in Dutch New Guinea, the United Kingdom, Germany and Israel.
Further development of the Kolibri ceased after the company was acquired by Aviolanda in
May 1959.

R.Simpson "Airlife's Helicopter and Rotorcraft", 1998

Here is a sampling of articles that I am aware of in which JSBSim is mentioned:

1. Simulated Flight Testing of an Autonomous Unmanned Aerial Vehicle Using
FlightGear, Eric F. Sorton and Sonny Hammaker, Institute for Scientific Research, Inc.

2. Development of a Low-Cost Simulator for Demonstration and Engineer Training,
R. Burns, M. Duquette, J. Howerton and R. Simko, Air Force Research Laboratory, Wright-
Patterson AFB AIAA-2003-5758

3. Autonomous Dynamic Soaring Platform for Distributed Mobile Sensor Arrays, M.
Boslough, Sandia National Laboratories, 2002

4. Robust Non-linear Control through Neuroevolution, Faustino John Gomez, Report
AI-TR-03-303, August 2003

5. A Design Approach for Low Cost, "Expendable" UAV Systems, C. Munro and P.
Krus, Linkoping University, Linkoping, Sweden, AIAA-2002-3451

Highlighted
References

Books:

XML Schema, Eric van der Vlist,
O’Reilly Press

XSLT Cookbook, Sal Mangano,
O’Reilly Press

SVG Essentials, J. David
Eisenberg, O’Reilly Press

Online:

http://xml.oreilly.com
http://www.w3.org
http://www.w3schools.com

Visit us on the web at:
www.jsbsim.org

Page 8

Simulate This! NHI H-3 "Kolibri"

JSBSim in Use …

http://xml.oreilly.com
http://www.w3.org
http://www.w3schools.com
http://www.jsbsim.org
http://www.isr.us/pdfs/publishedpapers/Simulated%20Flight%20Testing%20of%20a%20UAV%20Using%20FlightGear.pdf
http://www.aiaa.org/content.cfm?pageid=406&gTable=Paper&gID=11184
http://www.cs.sandia.gov/web9216/pubsagent/MobileSensorArrays.pdf
http://nn.cs.utexas.edu/downloads/papers/gomez.phdtr03.pdf
http://www.aiaa.org/content.cfm?pageid=406&gTable=Paper&gID=3632

