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light aircraft gaining experience in wind-tunnel 
testing, in measuring airplane performances, in the 
analysis of flight test maneuvers, and in the estima-
tion of aircraft aerodynamic and dynamic character-
istics from flight data. 

 
Simulator Layout 

 
The building where the simulator is located is 

divided into three areas: the simulator main room, 
the supervisor room, the briefing room. The main 
room is proportionate to the horizontal and vertical 
motion envelope of the cockpit and to three large 

fixed screens located in front of the cabin. Three 
static DLP projectors (DS30 from Christie Digital; 
3000 lumens, 1280×1024, SXVGA) project a com-
posite image of the virtual outside environment 
reproducing a horizontal field of view of 190 de-
grees (fig. 2). This particular projection system is 
preferred in car simulators and proved to be effec-
tive in the flight simulator presented here. 

 
During the simulation the pilot is given a mo-

tion cue, which is obtained by animating the air-
plane mock-up with a six-degree-of-freedom mo-
tion base Maxcue 610-450-16-12 by cueSim. This 
motion base has six high efficiency electric actua-
tors arranged in the Stewart platform format. The 
main performance characteristics of this 1000 kg 
maximum payload motion platform are summarized 

(Continued on page 2) 

The University of Naples “Federico II” in Italy 
has recently acquired a 6DOF flight simulation fa-
cility. The news is that FlightGear and JSBSim are 
two important building blocks of this research 
simulator. Even better, since the earliest design 
stage, most of the required characteristics to the 
flight simulation software that would drive the 
simulator were found to fit perfectly with what 
FlightGear and JSBSim had to offer: (i) low cost, in 
our case free, (ii) controllable and easily customiza-
ble for special needs, in our case Open Source, and 
(iii) highly configurable especially in terms of flight 
model definition, i.e. one of the most valuable fea-
tures of JSBSim. 

 
The whole system has 

been designed to be operated 
both as a driving simulator 
and as a flight simulator and 
is going to be managed by 
two different research teams, 
one including the author and 
his colleagues of the Aircraft 
Design and Aeroflightdynam-
ics Group working at the De-
partment of Aeronautical 
Design, the other team com-
ing from the Transportation 
Department of the same Uni-
versity. The simulator in-
cludes a full-scale cabin, a 
motion base, a large projec-
tion system, and force feed-
back modules (fig. 1). The 
half-body of a real car and 
the aircraft cockpit mock-up 
are exchangeable and easily 
installed on the motion plat-
form. 

 
The author contributed to the specifications, the 

development and the final acceptance procedure of 
this facility as for the flight simulation section. The 
simulator was built by Oktal, France, (www.oktal.
fr). The aim of the flight simulator is twofold: serv-
ing as a tool for the investigation of flying qualities 
of light and ultra-light aircraft and offering a train-
ing option to the pilots of such airplanes. For these 
reasons the simulator cockpit has been conceived as 
a generic cabin of a small aircraft. 

 
There is a strong interconnection between the 

simulator operating characteristics and the research 
topics dealt with by the author and his research 
group colleagues in the fields of flight testing. In 
particular, they have worked at the design and the 
whole certification process of some Italian ultra-
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(Continued from page 1) 
as follows: 

 
      min/max pos. Vpeak     Accelpeak 
Surge −491/+432mm  718mm/s ±1.39 g 
Sway  −425/+425mm  712mm/s ±1.20 g 
Heave −247/+248mm  484mm/s ±0.59 g 
Roll  −25/+25deg   50deg/s 575deg/s2 
Pitch −24/+25deg   48deg/s 595deg/s2 
Yaw   −43/+43deg   82deg/s 1100deg/s2 

Inside the cockpit, a complete and customiza-
ble virtual instrument panel is reproduced by 
means of two tactile LCD screens (fig. 3). One 
screen is used to display a virtual flight panel. 
The second screen enables the display of what is 
needed by the experiments, such as moving maps 
or flight parameter real-time plots. A space is 
also reserved for a third screen. The flight con-
trols are made up of a Cirrus II Flight Console 
from Precision Flight Inc., a yoke, which is in-
cluded in the original flight console but whose 
position has been conveniently modified, and a 
pair of real rudder pedals. The yoke and the rud-
der pedals are connected to a force feedback sys-
tem giving to the pilot an additional cue on the 
piloting effort. 

The simulation of aircraft motion, the cockpit 
instrument panel and flight controls, the outside 
scenery are all managed by a number of instances 
of Flight-Gear, running on dedicated computers, 
and talking to each other via Flight-Gear’s net 
protocols. 

 
The virtual environment is generated using 

PC technology, by the graphic board NVIDIA 
GeForce Quadro FX4000. 

 
Two other software modules also support the 

simulation. The first is in charge of the motion 
cue and moves the Stewart platform; the second 
is designed to manage a control force reproduc-
tion system. 

 
Special work on FlightGear and JSBSim code 

 
A number of FlightGear code modifications 

were necessary to have the simulator facility 
functioning as expected. Some of them are of 
minor significance; some others were implied by 
the chosen version of FlightGear (i.e. v.0.9.8) or 
by the particular piece of hardware (the Cirrus 
flight console, for instance). As far as the author 
knows, this is the first application that makes use 
of FlightGear together with: a 6DOF motion 
base, a 3-screen projection system, and flight 
control force feedback. 

 
As for the outside scenario, an improved 

management of three different but joint images 
had to be implemented in FlightGear in order to 
represent correctly a field of view of 190 degrees. 
A related modification regarded the connection 
between the visual and motion cues. The repre-
sentation of the horizon has been modified and 
coupled with the motion cue algorithm in order 
to enhance the perception of acceleration within 
the limits of the motion base performances. Up to 
date this approach has proved to be quite safe 
with respect to the simulation sickness issue. 

 
But there are also a couple of things here that 

are more relevant for this newsletter audience. 
 
A funny one is that, right in the same period, 

while the JSBSim on-ground bug had been tack-
led and worked out in Naples, JSBSim new re-
lease 0.9.10 came out at the same time on 
SourceForge website with the same problem 

solved. Moreover, quite 
a bit of work has been 
done by the author to 
implement the force 
feedback software. That 
covers some to-do re-
quests from JSBSim 
developer forum and, in 
author’s opinion, his 
code, being written in 
C++ and following the 
JSBSim style is easily 
adaptable to be incorpo-
rated in future versions 

(Continued on page 3) 
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Edited by Jon Berndt 
 
“Back of the Envelope” is a 
communication tool written 
generally for a wider audience than 
core JSBSim developers, including 
instructors, students, and other 
users.  The articles featured will 
likely tend to address questions and 
comments raised in the mailing 
lists and via email.  If you would 
like to suggest (or even author) an 
article for a future issue, please 
email the editor at: 
 
Jon@jsbsim.org 

About this 
newsletter ... 

Figure 2 

Figure 3a 
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(Continued from page 2) 
of JSBSim. 

 
For that reason, and for the purpose of starting 

an auspicious future discussion on the subject, 
flight control force computation is outlined here. 

Force Feedback 
 
In order to reproduce realistic piloting efforts, 

especially for light aircraft with reversible con-
trols, particular care is needed in the implementa-
tion of hinge moment equations. 

 
For those who may feel uneasy with terms 

such as “differential equation” or “equations of 
motion,” please think of it simply as the equivalent 
of mathematical model. If this is still too much, 
just think of it as the one that drives the cockpit 
controls and gives the pilot the impression that the 
air (and, we’ll see, something else) tends to move 
the aerodynamic control surfaces (elevator, ailer-
ons, rudder). 

 
For the sake of example, let’s consider the mo-

tion of a conventional elevator. This model is illus-
trated by fig. 4, above right (“e” stands for eleva-
tor). 

 
In a generally maneuvered flight the aerody-

namic surfaces are forced to rotate around their 
hinge axes by three causes: the aerodynamic pres-
sure, the action of the pilot, and surface inertia. 
The latter is as intuitive as the first two if simply 
thought of as the moving surface angular accelera-
tion multiplied by its moment of inertia around the 
hinge line (i.e. the first typical term in the model 
equation). In the general case, one has to add to the 
typical inertial term two comparable fellows, 
which are better known as “inertial coupling” and 
“hinge line eccentricity” effects. These effects are 
all torques acting on the elevator around the hinge 
as well. The moment resulting from the inertial 
coupling actions is due to a time-varying aircraft 
pitch rate and/or to a combination of non-zero roll 
and yaw rates about airplane center of gravity. The 
eccentricity effects come into play when the center 

Page 3 of gravity of the moving part of the tail does not 
reside exactly along the elevator hinge line but 
somewhere else behind, or ahead of it. Aircraft 
acceleration along its own z-axis results then in a 
torque applied to the elevator. These additional 
inertial effects are lumped together in the second 

term at the left hand side of 
elevator equation of motion. 
 
The aerodynamic (A) actions 
on the elevator are incorpo-
rated in the first term in right-
hand-side of the model equa-
tion and depend on the cur-
rent aircraft state, from tail-
plane geometry, and obvi-
ously from tailplane aerody-
namics (fig. 5). Such a de-
pendency requires the exten-
sion of the current JSBSim 
flight control definition fea-
tures. 
 
Finally, the last term in right-
hand-side of the equation of 
fig. 4 is the torque applied by 
the pilot to the control surface 

by pushing or pulling the yoke (C stands for com-
manded). The actual force applied by the pilot is 
reduced to a moment about the elevator hinge after 
dividing by the dimensional gearing ratio. The 
gearing needs a special care because it depends 
from the particular arrangement of the actual air-
craft command line. Generally, in a commanded 
maneuver the pilot control force is non-zero and is 
treated as an input in the model equation. A par-
ticular case handled naturally by the simulator is 
that of stick-free flight, that is when the applied 
pilot force is zero. This enables to investigate on 
flight qualities of a given 
airplane in stick-free con-
ditions. 

 
When the force-

feedback system is matched 
with JSBSim, the cockpit 
control loads are computed 
at each simulated time step. 
Stick and pedal resulting 
motion is controlled be-
tween two successive 
JSBSim state updates with 
a given frequency. This is 
also referred to as the “inner” integra-
tion loop while the JSBSim job is then called 
the “outer” integration loop. 

 
Fig. 6 illustrates the model of longitudinal 

control dynamics. The algorithm controlling the 
force cue to the pilot (i) evaluates the inertial 
coupling and aerodynamic terms according to the 
current aircraft state and to the specific control 
surface data, (ii) performs appropriate measures of 
the action exerted by the pilot on the yoke, and (iii) 
calculates the angular acceleration contained in the 
first term of the model equation, resulting from the 

(Continued on page 4) 

Figure 3b 

Figure 4 

Figure 5 

Figure 6. Schematic of longitudinal 
control loading implemented in the 
force feedback software. 



Page 4 (Continued from page 3) 
difference between the sensed actions and the calculated aerodynamic/inertial actions. Finally, the con-
trol loading module orders to the actuator connected to the yoke to move (accelerate) accordingly, giv-
ing the desired “feel” to the pilot. If pilot’s action is adequate to react to the feedback and keep the yoke 
position stationary, the flight conditions remain “stick-fixed,” or nearly so. The stick-fixed, or static 
equilibrium condition happens when there is a balance between pilot’s action and aerodynamic actions, 
with a consequent non-varying angular excursion of the cockpit control. 

 
The actuators and the rest of the hardware of the force feedback system are designed to reproduce a 

realistic amount of effort required to the subject pilot. The following are 
the main characteristics of the force feedback system: 
 
Maximum force on yoke ±400 N (push/pull) 
Maximum torque on yoke ±40 Nm (turn left/right) 
Maximum force on each pedal 400 N (left or right) 
 
For the sake of uniformity and for possible future integration with newer 
releases of JSBSim, the control loading code input file follows the 
JSBSim configuration philosophy. It reads similar XML files containing 
a description of the following items: i) control surface geometric and 
mass properties, ii) control system mechanical properties, i.e. various 
gearings, iii) Control surface aerodynamic characteristics, i.e. hinge mo-
ment coefficients, iv) control surface auxiliary characteristics, v) data 
logging directives. 
 
Example of coding 
 
Here is an indicative structure of the class CFFBConfig that handles the 
control force computation. 
 

 
 

class CFFBConfig 
{ 
public: 
   CFFBConfig(); 
   ~CFFBConfig(); 
 
   bool LoadFFBFile(const string& strFileName); 
 
   void ComputeFFB(int typeCommand, // AL , EL , RU 
   double& ffb , // Out 
   const ForceFeedBackData_t& ffbdata , 
   double commandPosition, 
   double commandRate, 
   double dt , 
   double pilotForce); 
 
protected: 
   void ResetValues(); 
   void ExtractAmplification(FGConfigFile *pCfg); 
   void ExtractGearing(FGConfigFile *pCfg); 
 
   void ExtractControlMassBalance(FGConfigFile *pCfg); 
   void ExtractControlMetrics(FGConfigFile *pCfg); 
   void ExtractTable(FGConfigFile *pCfg , CTable2d& tab); 
   bool ExtractData(FGConfigFile *pCfg , FFBData_t& rData); 
 
   amplification_t m_amplification; 
   gearing_t m_gearing; 
   control_mass_balance_t m_control_mass_balance ; 
   control_metrics_t m_control_metrics[3]; 
   brakes_t m_brakes; 
   CTable2d m_Ch[3]; 
   CTable2d m_ChTrim[3]; 
 
   FFBData_t m_FFBData[3]; 
}; 

About the author 
 

Agostino De Marco was born in 
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University of Naples "Federico II" in 
1996, earning a degree in Aerospace Engi-
neering. 

  
In 2001 he received a PhD in Naval 

Engineering from the same University. 
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searcher in the Department of Aeronauti-
cal Design and teaches Flight Simulation 
Techniques, and Aircraft Flight Stability 
And Flight Qualities as a member of the 
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Figure 7. Some geometrical quantities 
that play a role in the control surface 
dynamics. 
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Page 5 Hardware / Software Integration with JSBSim: Manta UAV 
Sam Heyman 

transmitter. An off-the-shelf USB interface cable 
provided a link between the PC running the flight 
simulator and a transmitter, for manual control. 

Figure 2 shows a plot of the ‘Manta’ data, 
logged during a virtual flight test (in FlightGear). 
It shows the response of the aircraft to a step input, 
produced by a half deflection of the trim command 
on the radio control transmitter (0.01 rad deflec-
tion). The plot of the elevator position was scaled 
up by a factor of 10 to make it clearer to see. 

 
The aircraft pitch response is a decaying oscil-

lation with an overshoot of 300% and a natural 
frequency of approximately 10 seconds. This re-
sponse is predominantly a phugoid motion, with an 
almost non-existent short period response. The full 
longitudinal transfer function for pitch angle re-
sponse to an elevator input is given in equation (1), 
this transfer function consists in two modes of re-
sponse: the short period mode and the phugoid 
mode. Given the plot of the aircraft pitch angle 
response, it was apparent that the response could 

be modeled with the phugoid term alone, given in 
equation (2). This simplification significantly 
eased the analysis of the aircraft stability. 

 
(Continued on page 6) 

The aim of this project was to develop a HITL  
(Hardware In-The-Loop) simulation of an autono-
mous air vehicle using the FlightGear flight simu-
lator.  A standard radio control transmitter would 
provide manual control of the aircraft and aircraft 
state data would be returned via a simulated com-
munication downlink. This would enable an exter-
nal control system to be connected and tested. 

 
The operation of autonomous UAVs is similar 

to that of a radio controlled aircraft, and most of 
the hardware is common. An existing radio con-
trolled aircraft had previously been implemented 
by the author in FlightGear, and was therefore 
readily available. This formed the starting point of 
the project. It was assumed that the aircraft would 
be equipped with a horizon sensing attitude stabili-
sation system. This is a highly effective and low 
cost way of stabilising the aircraft in pitch and roll. 
An example of such system is the FMA Co-Pilot 
CPD4, shown in Figure 1. 

The attitude stabilisation system uses horizon 
detectors, such as infrared or thermopile sensors, 
to detect the aircraft attitude. The aircraft attitude 
is then fed into the stabilisation system forming a 
simple feedback loop. This helps maintain the air-
craft level in both axes. The attitude stabilisation 
system was modeled in the aircraft flight dynamics 
model (JSBSim), as it constitutes a low-level part 
of the overall control system. 

 
Through the course of the project, two pro-

grams were developed to handle and log the air-
craft data, output by the simulator. The aircraft 
pitch and roll motions were analyzed, and, from 
the aircraft state data logged during “virtual flight 
tests” (using FlightGear/JSBSim), an approxima-
tion for the longitudinal response was derived. 
This enabled a Matlab Simulink model to be pro-
duced, which was used as a development tool for a 
low level pitch attitude stabilisation system. A roll 
attitude stabilisation system was also implemented 
by testing different values of gain in the feedback 
loop and choosing the one that gave the best han-
dling qualities. 

 
“Flight Tests” and Modeling 

 
Manual control of an autonomous air vehicle is 

often provided through a standard radio control 

Figure 1.  FMA Co-Pilot CPD4. 
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Figure 2.  Manta UAV pitch response. 



Page 6  pitch angle response, this system is well suited for 
damping phugoid response. Figure 4 illustrates 
how the system can be implemented. 

 
In order to determine the required gain K, a 

root locus was plotted in Matlab (Figure 7.2) and, 
with the help of the ‘rlocfind’ function, the re-
quired gain value for a damping of approximately 
0.7 was derived: 

 
 
 
Having obtained the amount of gain needed, 

the pitch angle feedback loop was added to the 
Simulink model. The results produced are shown 
in Figure 5 (next page). 

 
The aircraft JSBSim flight control system was 

then altered to provide the feedback loop. For this 
two extra blocks ‘Pitch Feedback’ and ‘Elevator 
Control Aug’ were added. The ‘Pitch Feedback’ 
block takes the pitch angle and multiplies it with 
the desired gain. The ‘Elevator Control Aug’ block 
sums the pitch angle feedback and the open-loop 
elevator control to give the elevator position. The 
pitch control section of the aircraft FDM is given 
below [Ed. I modified Sam’s original specification 
to reflect the new JSBSim-ML v2.0 format]: 
 
<summer name="pitch trim sum"> 
 <input>fcs/elevator-cmd-norm</input> 
 <input>fcs/pitch-trm-cmd-norm</input> 
 <clipto> 
  <min> -1 </min> 
  <max>  1 </max> 
 </clipto> 
</summer> 
 
<aerosurface_scale name="elevatorctl"> 
 <input> fcs/pitch-trim-sum </input> 
 <min> -0.5 </min> 
 <max>  0.5 </max> 
</aerosurface_scale> 
 
<pure_gain name="pitch feedback"> 
 <input> attitude/theta-rad </input> 
 <gain>  0.032 </gain> 
</pure_gain> 
 
<summer name="elevator control aug"> 
 <input>fcs/elevatorctl</input> 
 <input> fcs/pitch-feedback </input> 
 <clipto> 
  <min> -0.5 </min> 
  <max>  0.5 </max> 
 </clipto> 
 <output>fcs/elevator-pos-rad</output> 
</summer> 

 
Additional virtual flight tests were carried out 

and the necessary flight data recorded. The re-
sponse observed is plotted in Figure 6 (next page). 
The plots accurately matched the Simulink model 
predictions. In terms of handling through the radio 
control transmitter, the aircraft felt much more 
stable, as hoped. Sharp inputs were much better 
damped and the aircraft regained stability faster. 
Pilot workload was thus greatly reduced. 

 

(Continued on page 7) 

(Continued from page 5) 
From Figure 2, the frequency, damping, time 

constant and pitch gain were derived giving the 
following transfer function: 

A Matlab Simulink model of the aircraft was 
implemented, as a tool for the development of the 
stability augmentation system. The model is shown 
in Figure 3. The graphs produced by the Simulink 
model, also given in Figure 3, accurately match 
those obtained from the virtual flight tests on the 
simulator (FlightGear/JSBSim), thus validating the 
aircraft model. 

Stability Augmentation 
 
From the virtual flight tests and the plots of the 

data, it was clear that the ‘Manta’ UAV is an un-
steady aircraft that requires constant pilot attention 
to maintain straight and level flight. This is not 
acceptable for an autonomous air vehicle. An atti-
tude stabilisation system would help make the air-
craft steadier. 

As previously shown, the Manta UAV pitch 
response is dominantly a phugoid motion and pitch 
angle feedback is an appropriate way of damping 
phugoid oscillation. The technique is the same as 
that used in early autopilots. Since the pitch angle 
is fed back, the elevator moves to oppose any pitch 
angle error. As the phugoid mode has fairly large 
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(Continued from page 6) 
Results 

 
From the correlation between the Simulink 

predictions of the pitch stabilisation and the flight 
test results, it was clear that the aircraft could be 
modeled using Matlab Simulink and that the model 
could be used as a development tool for an attitude 
stabilisation system. 

 
It was also apparent that an attitude stabilisa-

tion system, based on attitude feedback, was an 
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effective way of stabilising the aircraft and that 
embedding it in the JSBSim flight dynamics model 
was justifiable. 

 
More information and aircraft model available 

on the project webpage (http://seis.bris.ac.uk/
~sh1823/Manta.htm).  

Figure 5: Simulink Model Predictions for Pitch Angle Feedback (K=0.032) 

Figure 6.  Aircraft Pitch Response With Pitch Angle Feedback  
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Page 8 JSBSim Commander Screenshots 

Above: Flight control systems for JSBSim aircraft can be created and modified in the flight control system editor. 

Below: The propulsion system editor allows selection of engines, placement and orientation. 
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JSBSim Commander Source Opened 
 
Last year Back of the Envelope featured a 

story about an application called, JSBSim Com-
mander. The application was meant to provide a 
GUI editor for JSBSim aircraft and engines, and 
also to act as an interface to running JSBSim and 
analyzing results. JSBSim Commander was in-
spired by an original application created by Mat-
thew Gong. Matthew has taken his version JSBSim 
Commander quite far—to the point of actually 
working, and his version is written using 
wxWidgets, a cross-platform GUI toolkit. The pro-
ject is in the process of becoming an open source 
project hosted on SourceForge. The web site is at 
www.sf.net/projects/jsbsimcommander. The 
source code has now been uploaded to the web 
site, and screen shots (see page 8) have been up-
loaded. 

 
Aerocross Systems and JSBSim 

 
Aerocross Systems, Inc. is utilizing JSBSim as 

the 6DOF simulation core in their real-time, flight 
hardware-in-the-loop test platform.  This platform 
is used for flight hardware/software development, 
integration, and testing in support of several Un-
manned Aerial System (UAS) programs.  Aero-
cross Systems has also successfully integrated 
JSBSim with commercial off-the-shelf and open 
source Control System Computer Aided Design 
(CSCAD) packages to support flight control law 
development and analysis. 
 
New JSBSim Version Released with New Flight-
Gear Version 

 
The new version of FlightGear incorporates 

some significant modifications and enhancements 
with the newest revision of JSBSim, v0.9.10. This 
release of JSBSim features a revamped specifica-
tion language that is more well-formed XML. The 
new version of the JSBSim config file format is 
called JSBSim-ML v2.0 (JSBSim Markup Lan-
guage). 
 
Among the new capabilities afforded by JSBSim-
ML v2.0 are: 

 
• There is an early beta version of an XML 

schema (JSBSim.xsd) that can be used to 
validate any new aircraft config file. 

• There is an early beta version of an XML 
stylesheet (JSBSim.xsl) that can be used 
to format an aircraft config file for pres-
entation in a web page. 

• Units can now be specified for some air-
craft parameters. 

• Functions can be specified in an aerody-
namic "coefficient" definition. Etc. 

Several new capabilities have been added in code, 
too: 

 
• An experimental ground reactions enhance-

ment reduced ground jitter at low or zero ve-
locity for most aircraft. This is still a work in 
progress. 

• More error handling, more robust handling of 
input files. 

• A new turboprop engine model has been 
added. 

• The propeller model has been enhanced. 
Sensors can be modeled in the flight control 
definition for an aircraft. 

• Functions can be modeled as part of a flight 
control definition. Etc. 

• Gimballing can be done for rockets, etc. 
 
As part of this significant upgrade, be advised that 
not all aircraft have been updated to the new 
JSBSim-ML v2.0 format. Some aircraft have tem-
porarily lost aerosurface animations. It is not diffi-
cult to add these features back. Instructions and 
tools for converting from the old format to the new 
are available at the JSBSim web site: www.jsbsim.
org. Any problems with a JSBSim aircraft model 
should be promptly reported to either this list or 
the JSBSim mailing list. 
 
For more information on the new JSBSim capabili-
ties and on JSBSim-ML, see the project web site at 
www.jsbsim.org. 

News: “JSBSim Commander” SourceForge Project 

Aerocross Systems, Inc. is testing a Rotax 914 engine in this image, exhaust pipes glowing with 
gases passing through at >1650°F! More information on the Rotax 914 can be found here: 
http://www.rotax-aircraft-engines.com/aircraft/aircraft.nsf/eng_914F?OpenPage 

http://www.sf.net/projects/jsbsimcommander
http://www.jsbsim.org
http://www.jsbsim.org
http://www.rotax-aircraft-engines.com/aircraft/aircraft.nsf/eng_914F?OpenPage
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As an example, let’s examine the lift force due 
to angle of attack (alpha). We know that increasing 
the angle of attack increases lift – up to a point. 
Lift force is the product of dynamic pressure 
(qbar), wing area (Sw), and lift coefficient (CL). In 
this case, the lift coefficient is determined via a 
lookup table, using alpha as a lookup index into 
the table (Listing 1). What the function results in is 
for lift due to alpha to be calculated each pass 
through the aerodynamics calculations in JSBSim. 
The value of the function is the product of qbar, 
wing area, and lift coefficient as determined by the 
lookup table. For instance, if alpha (in radians) is 0 
degrees, the lift coefficient is 0.240.  

So, where do we get this information about the 
Beech 99? Aeromatic has created for us a boiler-
plate configuration file populated with plausible 
values for many aerodynamic terms. However, 
there are a lot of refinements that can – and 
should - be made. First of all, the document men-
tioned at the beginning of this article contains spe-
cific information about the aerodynamic qualities 
of the aircraft. Let’s look at how to tweak a 
JSBSim aerodynamics specification for a specific 
aircraft. 

 
Let’s consider CLα first. The symbol CLα is 

shorthand for δCL/δα, or the change in lift coeffi-
cient with a change in alpha. This is just the slope 
of the lift coefficient curve (see Fig. 5 for an exam-
ple). The lift curve slope for an ideal 2D airfoil 
section is 2π (per radian). For a cambered airfoil, 
the lift curve does not pass through zero – that is, 
there is an inherent lift to the airfoil even at zero 
angle of attack. Furthermore, a real wing (i.e. not a 
2D airfoil section) is not as efficient as an airfoil, 
and the slope of the lift curve will be somewhat 
less than 2π. Additionally, a real wing will eventu-
ally stall at a particular angle of attack, perhaps 
around 12-16 degrees. The information given in 
the Beech 99 report is valuable, however, some 
adjustments will have to be made to account for 
stalling. The value of CLα defines a slope – a line 
that goes on forever! [to be continued later ...] 

The thought of creating an aircraft flight 
model in JSBSim can seem daunting. One must 
gather a considerable amount of information 
about an aircraft before it can be accurately 
modeled. To help guide flight modelers in the 
task of creating a flight model, a document is 
currently being written that serves as a journal 
of this author’s efforts towards creating an ac-
curate flight model of the Beech A99A Airliner. 
What follows here are excerpts from that docu-
ment.  It is hoped that the full document can be 
finished and posted on the JSBSim web site in 
the near future (before the next newsletter 
comes out in July). 

 
Aerodynamic 
forces and 
moments [in 
JSBSim] are 
modeled using 
the classic 
c o e f f i c i e n t 
b u i l d u p 
method. The 
lift, drag, and 
side forces, 
and the pitch, 
roll, and yaw 
moments need 
to be calcu-
lated to deter-
mine the flight 
path that an aircraft will take. Many factors con-
tribute to each of the forces and moments acting on 
an aircraft. For instance, lift is a function of the 
inherent lift of the aircraft at zero degrees angle of 
attack, the lift due to a change in angle of attack 
from zero degrees, the lift due to a deflection of 
the horizontal stabilizer (pitch command), the lift 
due to pitch rate, the lift due to flap deflection, etc. 
Likewise, for the other five axes, the total force or 
moment is the sum of the individual contributions. 

 
The aerodynamic definition for a JSBSim air-

craft flight model is comprised of six sections cor-
responding to the forces and moments about three 
axes each (for a total of six degrees of freedom). In 
each section, any number of functions are present 
that define individual contributions to a force or 
moment. Additionally, “global” functions may be 
defined at the beginning of the aerodynamics sec-
tion, outside of any axis section, for later use by 
another function. 

 
A function in JSBSim may be composed of 

common arithmetic and/or trigonometric opera-
tions on one or more operands. MathML, the XML 
markup language for mathematical constructs, in-
spires the format of the JSBSim function but the 
JSBSim function is much simpler. A cue is also 
taken from AeroML, the proposed standard under 
consideration by AIAA for exchange of simulation 
models. 

 

<function name="aero/coefficient/CLalpha"> 
 <description>Lift_due_to_alpha</description> 
  <product> 
    <property>aero/qbar-psf</property> 
    <property>metrics/Sw-sqft</property> 
    <table name=”CL”> 
      <independentVar lookup="row">aero/alpha-rad</independentVar> 
      <tableData> 
        -0.20 -0.720 
         0.00  0.240 
         0.22  1.300 
         0.60  0.664 
      </tableData> 
    </table> 
  </product> 
</function> 
 
Listing 1.  Lift coefficient as a function of alpha. 

Aerodynamic Modeling in JSBSim 
Jon S. Berndt 
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Wingspan 45.9 feet (13.98 meters) 

Horizontal tail span 22.38 feet (6.82 meters)
Tail area 100 feet2 (9.29 meters2)

MAC 4.63 feet (1.41 meters)
Aspect Ratio 5.0

Sweep 17°

Dihedral 7° 

2 Hartzell HC-B3TN-3 or HC-B3TN-3B hubs with 
Hartzell T10173E-8 or T10173B-8 blades. 
Diameter: 93-3/8 in. 
Pitch settings at 30 in. sta.: 
Reversing propeller: 
Reverse - 11° 
Feather - 87° 

Flight idle propeller low pitch stop is set so that at 
2000 r.p.m., torque shall be an indicated 600 +60 
ft.-lb. corrected for sea level standard day. 
Secondary flight idle stop shall be 210 +40 
propeller r.p.m. higher than flight idle stop with a 
gas generator speed of 70 percent. 

Fuselage/Propeller clearance 3 inches (0.076 meters) 

Engine thrust lines and wheelbase 
span 13 feet (3.96 meters)  
 
Flap total Area 37.8 ft2 (3.51 m2) 
Flap span (each) 12.4 ft (3.78 m) 
Flap chord 1.5 feet (0.46 m) 

Beechcraft B99 
Model A99A Airliner 

Engines: Pratt & Whitney PT6A-27, 
Shaft HP 680, Equiv. Shaft HP 715, 
Jet thrust 76 lbs.,  Max. allowable 
TIT 1337° F (725° C). Propeller 
shaft speed 2100 rpm. Burns JP-4, 
JP-5, JP-8, Jet A, Jet A-1, Jet B 

Maximum operating speed: 260 mph (226 kts, 
@ 15.5kft, for 15.5kft to 25kft decrease 4 kts 
per 1kft) 
Maneuvering speed: 195 mph (169 kts) 
Flaps extend speed: 161 mph (140 kts) 
Landing gear extend: 180 mph (156 kts) 
Landing gear operating: 150 mph (130 kts) 
 

Flaps Maximum 43° 
Aileron up 18°, down 15° 
Elevator up 12°, down 15° 
Stabilizer up 4.25°, down 3.5° 
Rudder right 26°, left 20° 

Datum 

Weight 
Empty equipped 5777 lbs. (2620 kg) 
Full Fuel 
Max takeoff 10,900 lbs. (4944 kg) 
CG @ +179 to +195 in. (gear extended), 26% MAC 
Ixx 12,464.8 slug-ft2 (16,900 kg-m2) 
Iyy 17,627 slug-ft2 (23,900 kg-m2) 
Izz 28,691 slug-ft2 (38,900 kg-m2) 

Wing area 279.97 ft2 (26.01 meters2) 
Wing chord (MAC) 6.5 feet (1.98 meters) 
Aspect Ratio 7.54 
Dihedral 6.8 degrees 
Wing root airfoil NACA 23018 
Wing tip airfoil NACA 23012 

Elevator 
Area 26.4 ft2 (2.45 m2) 
MAC 0.39 

Vertical tail
Area 44.9 ft2 (4.17 m2)
Span 7.6 ft (2.32 m)
MAC 6.3 ft (1.9 m) 
AR 1.29  
Sweep 19.5°

18 feet (5.48 meters) 

Engine thrust offset 2° 

Height 14.4 
feet (4.38 m) 

Rudder
Area 12 ft2 (1.12 m2)

MAC 0.55

Aileron total area 13.9 ft2 (1.29 m2) 
Aileron span (each) 7.9 ft (2.4 m) 
Aileron chord 0.9 ft (0.28 m) 

Beech 99 A99A Airliner Specifications (compiled by Jon S. Berndt 2006) 

When crafting a flight model 
for any specific aircraft, col-
lecting as much data as possi-
ble about that aircraft is essen-
tial to the process. The diagram 
at left was used by the author to 
collect and record much rele-
vant information about the 
chosen aircraft, the Beech 
A99A Airliner. 
 
This diagram is taken from the 
paper “A Journal for the Crea-
tion and Refinement of a 
JSBSim Aircraft Flight Model”, 
to be released in the coming 
months. 
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 {with <style>} 
 {, {definitions,} <function> ...} 

 
A relatively easy way to learn gnuplot is to 

start it up and play with it. Typing “gnuplot” will 
start the application and give the prompt. For your 
first command, type “plot 1”. The result is a chart 
with a horizontal line at y=1. Let’s leave the sim-
ple stuff behind and go straight to a JSBSim data 
log file in comma separated value (csv) format. 

 
When working with csv files, the first thing 

that needs to be done is to tell gnuplot that it 
should use a comma “,” as a data delimiter: 

 
set datafile separator "," 

 
The next thing is to tell gnuplot which data 
to plot. In my setup, I simply type this com-
mand: 
 
plot "c172outE0.csv" using 1:37 

 
which results in the plot at left. 
 
The plot command is specifies that column 
1 data should be used for the X axis, and 
column 37 data should be plotted on the Y 
axis. In JSBSim, column 1 (there is no col-
umn 0) is always Time. In the particular 
data log ("c172outE0.csv"), column 37 is 
Distance AGL. 
 
Unfortunately, it can be kind of a pain to 
find which terms you want to plot. One 
convenient script of shell commands can be 
used to get an alphabetically sorted list of 
terms and the column number for that term 
in the data log: 
 
head -1 $1 | sed "s/, /\n/g" | 
cat -b | sort -fdk2 

 
I have a script called index.sh that contains 
the above commands. For that script to 

work, the filename containing the data must be 
given on the command line as an argument: 
 

./index.sh c172outE0.csv 
 
The output from the above command is, 
column variable: 
 
    33  Alpha 
    66  Alt Error Lag 
    29  Altitude 
    65  Altitude Error 
    69  AP Alt Hold Switch 
    34  Beta 
    73  Control Summer 
    37  Distance AGL 
    19  Drag 

(Continued on page 13) 

According to the project web site: 
 
Gnuplot is a portable command-line driven 

interactive data and function plotting utility for 
UNIX, IBM OS/2, MS Windows, DOS, Macintosh, 
VMS, Atari and many other platforms. The soft-
ware is copyrighted but freely distributed (i.e., you 
don't have to pay for it). It was originally intended 
as to allow scientists and students to visualize 
mathematical functions and data. It does this job 
pretty well, but has grown to support many non-
interactive uses, including web scripting and inte-
gration as a plotting engine for third-party appli-
cations like Octave. Gnuplot has been supported 
and under development since 1986. 

Gnuplot is a great complement when used with 
JSBSim data logging capabilities. It’s not a typical 
plotting tool, in that directives to gnuplot that de-
scribe how a plot is to be constructed and how it 
should look are given on the command line or 
through a script file. It takes a little getting used to, 
but once you become familiar with it, it is found to 
be easy to use and powerful. 

 
You can download gnuplot from www.

gnuplot.info. For those with cygwin or Linux, it 
may already be on your system. Typing “gnuplot” 
at the command line will show that. One of the 
most powerful commands to use with gnuplot is 
the plot command. It has a lot of options: 

 
plot {<ranges>} 
 {<function> | 
 {"<datafile>" {datafile-modifiers}}} 
 {axes <axes>} {<title-spec>} 

Using gnuplot with JSBSim 
Jon Berndt 

http://www.gnuplot.info
http://www.gnuplot.info
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    74  Elevator 
    …  … 
    etc. 
 
Labels, titles, a key, line style can be added. 

Labels, the title, and margins are set before the call 
to plot: 

 
set title "Altitude" 
set ylabel "Altitude (ft)" 
set xlabel "Time (sec)" 
set key on left top box 
set lmargin 12 
set rmargin 5 
set tmargin 5 
set bmargin 5 
 
Several traces can be made on one plot simply 

by specifying several items to plot: 
 

plot "c172outE0.csv" using 1:37 title "E0" with lines lw 1,\ 
     "c172outE1.csv" using 1:37 title "E1" with lines lw 1,\ 
     "c172outE2.csv" using 1:37 title "E2" with lines lw 1,\ 
     "c172outE3.csv" using 1:37 title "E3" with lines lw 1,\ 
     "c172outE4.csv" using 1:37 title "E4" with lines lw 1,\ 
     "c172outE5.csv" using 1:37 title "E5" with lines lw 1 

 
In the above example, the “with lines lw 1” 

options tell gnuplot to draw the traces with a solid 
line of width one (see figure below). 

 
The plot below was created in a study to evalu-

ate a series of gains to use in a proportional con-
troller for an altitude hold autopilot. A script file 
was created that used sed to change the gain, and 
run JSBSim (specifying an output file to store the 
data log in – this is a new capability with stand-
alone JSBSim). When all the runs were completed, 
gnuplot was used to plot the altitude traces in each 
of the data log files. 

 
Gnuplot commands can be stored in a script 

that creates a series of plots at once. The output 
type (a “terminal” type) can be specified, as well, 
so that output can be created in several popular 
formats, including Adobe PDF, png, gif, SVG, 
X11 screen display, etc. 

 
Gnuplot is a very capable application with a lot 

of options. However, only a few are really needed 
to get a lot of use out of it, and creative use of 
gnuplot can be a valuable aid in designing control 
systems and debugging. 

 



Worldwide Aeros Corporation has conceived a multi-use, heavier-than-air dirigible. From their 
web site: “The word Aeroscraft describes a flying craft that derives its lift partially from lifting gas 
(helium) and partially from the traditional dynamic lift created by the shape of the body. Aeros has 
designed a craft that takes advantage of both methods of lift. This design approach has resulted in the 
evolution of a craft that can fly further, operate more economically, and lift more than any other craft 
in the skies. The Aeroscraft has been designed to fill the very widest range of missions and conditions.” 

Modeling an airship adds a whole new dimension, because not only can one add bouyancy to the 
list of items that can cause forces and moments on an aircraft, but also the effects of “virtual mass” 
must be accounted for. When an aircraft (or submarine, fish, etc.) is moving through a medium of 
about the same (or greater) density, when accelerating the aircraft itself, some of the medium (e.g. air 
in this case) around it must also be accelerated. The same is true when decelerating. 

There has been interest in adding this capability to JSBSim, and there is at least one effort aimed at 
doing so. 

In a recent article for a bi-monthly publication, these uses for JSBSim were listed: 
 
• Teaching modeling and simulation concepts as part of the Modeling and Simulation Famili-

arization Tool developed at the Air Force Research Laboratory (Wright-Patterson AFB). 
• Providing flight modeling capabilities for a battlefield simulation framework developed by 

the Man-System Interaction department at the Swedish Defence Research Agency. 
• Serving as the flight model for a dynamic soaring study at Sandia Laboratories. 
• Serving as the flight model for an Ares Mars Airplane educational demonstrator (see www.

redcanyonsoftware.com). 
• Serving as the 6DOF simulation core in a real-time, flight-hardware-in-the-loop test platform 

that is used for flight hardware/software development, integration, and testing in support of 
several Unmanned Aerial System (UAS) programs. 

• JSBSim has also been successfully integrated with COTS and open source Control System 
Computer Aided Design (CSCAD) packages to support flight control law development and 
analysis. 

Highlighted 
References 

 
Online: 
 
“Measurement of the Effect of 
Accelerations on the Longitudinal and 
Lateral Motion of an Airship Model” 
http://naca.central.cranfield.ac.uk/
reports/arc/rm/613.pdf 
 
 

Visit us on the web at: 
www.jsbsim.org 
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Simulate This! 

JSBSim in Use … 

http://www.redcanyonsoftware.com
http://www.redcanyonsoftware.com
http://naca.central.cranfield.ac.uk/reports/arc/rm/613.pdf
http://www.jsbsim.org

