
A 6DoF Simulation Laboratory at the University of Naples
Agostino De Marco, University of Naples, “Federico II”, Italy

light aircraft gaining experience in wind-tunnel
testing, in measuring airplane performances, in the
analysis of flight test maneuvers, and in the estima-
tion of aircraft aerodynamic and dynamic character-
istics from flight data.

Simulator Layout

The building where the simulator is located is

divided into three areas: the simulator main room,
the supervisor room, the briefing room. The main
room is proportionate to the horizontal and vertical
motion envelope of the cockpit and to three large

fixed screens located in front of the cabin. Three
static DLP projectors (DS30 from Christie Digital;
3000 lumens, 1280×1024, SXVGA) project a com-
posite image of the virtual outside environment
reproducing a horizontal field of view of 190 de-
grees (fig. 2). This particular projection system is
preferred in car simulators and proved to be effec-
tive in the flight simulator presented here.

During the simulation the pilot is given a mo-

tion cue, which is obtained by animating the air-
plane mock-up with a six-degree-of-freedom mo-
tion base Maxcue 610-450-16-12 by cueSim. This
motion base has six high efficiency electric actua-
tors arranged in the Stewart platform format. The
main performance characteristics of this 1000 kg
maximum payload motion platform are summarized

(Continued on page 2)

The University of Naples “Federico II” in Italy
has recently acquired a 6DOF flight simulation fa-
cility. The news is that FlightGear and JSBSim are
two important building blocks of this research
simulator. Even better, since the earliest design
stage, most of the required characteristics to the
flight simulation software that would drive the
simulator were found to fit perfectly with what
FlightGear and JSBSim had to offer: (i) low cost, in
our case free, (ii) controllable and easily customiza-
ble for special needs, in our case Open Source, and
(iii) highly configurable especially in terms of flight
model definition, i.e. one of the most valuable fea-
tures of JSBSim.

The whole system has

been designed to be operated
both as a driving simulator
and as a flight simulator and
is going to be managed by
two different research teams,
one including the author and
his colleagues of the Aircraft
Design and Aeroflightdynam-
ics Group working at the De-
partment of Aeronautical
Design, the other team com-
ing from the Transportation
Department of the same Uni-
versity. The simulator in-
cludes a full-scale cabin, a
motion base, a large projec-
tion system, and force feed-
back modules (fig. 1). The
half-body of a real car and
the aircraft cockpit mock-up
are exchangeable and easily
installed on the motion plat-
form.

The author contributed to the specifications, the

development and the final acceptance procedure of
this facility as for the flight simulation section. The
simulator was built by Oktal, France, (www.oktal.
fr). The aim of the flight simulator is twofold: serv-
ing as a tool for the investigation of flying qualities
of light and ultra-light aircraft and offering a train-
ing option to the pilots of such airplanes. For these
reasons the simulator cockpit has been conceived as
a generic cabin of a small aircraft.

There is a strong interconnection between the

simulator operating characteristics and the research
topics dealt with by the author and his research
group colleagues in the fields of flight testing. In
particular, they have worked at the design and the
whole certification process of some Italian ultra-

Inside this issue:

A 6DoF Simulation Lab at
the University of Naples

1

Hardware/Software
Integration with JSBSim:
Manta UAV

5

JSBSim Commander
Screenshots

8

News: JSBSim Commander 9

Aerodynamic Modeling 10

Using GnuPlot with JSBSim 12

JSBSim In Use 14

Simulate This! 14

The quarterly newsletter for
JSBSim, an open source flight

dynamics model in C++

 APRIL 2006
VOLUME 3, ISSUE 1

Figure 1

http://www.oktal.fr
http://www.oktal.fr

(Continued from page 1)
as follows:

 min/max pos. Vpeak Accelpeak
Surge −491/+432mm 718mm/s ±1.39 g
Sway −425/+425mm 712mm/s ±1.20 g
Heave −247/+248mm 484mm/s ±0.59 g
Roll −25/+25deg 50deg/s 575deg/s2
Pitch −24/+25deg 48deg/s 595deg/s2
Yaw −43/+43deg 82deg/s 1100deg/s2

Inside the cockpit, a complete and customiza-
ble virtual instrument panel is reproduced by
means of two tactile LCD screens (fig. 3). One
screen is used to display a virtual flight panel.
The second screen enables the display of what is
needed by the experiments, such as moving maps
or flight parameter real-time plots. A space is
also reserved for a third screen. The flight con-
trols are made up of a Cirrus II Flight Console
from Precision Flight Inc., a yoke, which is in-
cluded in the original flight console but whose
position has been conveniently modified, and a
pair of real rudder pedals. The yoke and the rud-
der pedals are connected to a force feedback sys-
tem giving to the pilot an additional cue on the
piloting effort.

The simulation of aircraft motion, the cockpit
instrument panel and flight controls, the outside
scenery are all managed by a number of instances
of Flight-Gear, running on dedicated computers,
and talking to each other via Flight-Gear’s net
protocols.

The virtual environment is generated using

PC technology, by the graphic board NVIDIA
GeForce Quadro FX4000.

Two other software modules also support the

simulation. The first is in charge of the motion
cue and moves the Stewart platform; the second
is designed to manage a control force reproduc-
tion system.

Special work on FlightGear and JSBSim code

A number of FlightGear code modifications

were necessary to have the simulator facility
functioning as expected. Some of them are of
minor significance; some others were implied by
the chosen version of FlightGear (i.e. v.0.9.8) or
by the particular piece of hardware (the Cirrus
flight console, for instance). As far as the author
knows, this is the first application that makes use
of FlightGear together with: a 6DOF motion
base, a 3-screen projection system, and flight
control force feedback.

As for the outside scenario, an improved

management of three different but joint images
had to be implemented in FlightGear in order to
represent correctly a field of view of 190 degrees.
A related modification regarded the connection
between the visual and motion cues. The repre-
sentation of the horizon has been modified and
coupled with the motion cue algorithm in order
to enhance the perception of acceleration within
the limits of the motion base performances. Up to
date this approach has proved to be quite safe
with respect to the simulation sickness issue.

But there are also a couple of things here that

are more relevant for this newsletter audience.

A funny one is that, right in the same period,

while the JSBSim on-ground bug had been tack-
led and worked out in Naples, JSBSim new re-
lease 0.9.10 came out at the same time on
SourceForge website with the same problem

solved. Moreover, quite
a bit of work has been
done by the author to
implement the force
feedback software. That
covers some to-do re-
quests from JSBSim
developer forum and, in
author’s opinion, his
code, being written in
C++ and following the
JSBSim style is easily
adaptable to be incorpo-
rated in future versions

(Continued on page 3)

Page 2

Edited by Jon Berndt

“Back of the Envelope” is a
communication tool written
generally for a wider audience than
core JSBSim developers, including
instructors, students, and other
users. The articles featured will
likely tend to address questions and
comments raised in the mailing
lists and via email. If you would
like to suggest (or even author) an
article for a future issue, please
email the editor at:

Jon@jsbsim.org

About this
newsletter ...

Figure 2

Figure 3a

mailto:Jon@jsbsim.org

(Continued from page 2)
of JSBSim.

For that reason, and for the purpose of starting

an auspicious future discussion on the subject,
flight control force computation is outlined here.

Force Feedback

In order to reproduce realistic piloting efforts,

especially for light aircraft with reversible con-
trols, particular care is needed in the implementa-
tion of hinge moment equations.

For those who may feel uneasy with terms

such as “differential equation” or “equations of
motion,” please think of it simply as the equivalent
of mathematical model. If this is still too much,
just think of it as the one that drives the cockpit
controls and gives the pilot the impression that the
air (and, we’ll see, something else) tends to move
the aerodynamic control surfaces (elevator, ailer-
ons, rudder).

For the sake of example, let’s consider the mo-

tion of a conventional elevator. This model is illus-
trated by fig. 4, above right (“e” stands for eleva-
tor).

In a generally maneuvered flight the aerody-

namic surfaces are forced to rotate around their
hinge axes by three causes: the aerodynamic pres-
sure, the action of the pilot, and surface inertia.
The latter is as intuitive as the first two if simply
thought of as the moving surface angular accelera-
tion multiplied by its moment of inertia around the
hinge line (i.e. the first typical term in the model
equation). In the general case, one has to add to the
typical inertial term two comparable fellows,
which are better known as “inertial coupling” and
“hinge line eccentricity” effects. These effects are
all torques acting on the elevator around the hinge
as well. The moment resulting from the inertial
coupling actions is due to a time-varying aircraft
pitch rate and/or to a combination of non-zero roll
and yaw rates about airplane center of gravity. The
eccentricity effects come into play when the center

Page 3 of gravity of the moving part of the tail does not
reside exactly along the elevator hinge line but
somewhere else behind, or ahead of it. Aircraft
acceleration along its own z-axis results then in a
torque applied to the elevator. These additional
inertial effects are lumped together in the second

term at the left hand side of
elevator equation of motion.

The aerodynamic (A) actions
on the elevator are incorpo-
rated in the first term in right-
hand-side of the model equa-
tion and depend on the cur-
rent aircraft state, from tail-
plane geometry, and obvi-
ously from tailplane aerody-
namics (fig. 5). Such a de-
pendency requires the exten-
sion of the current JSBSim
flight control definition fea-
tures.

Finally, the last term in right-
hand-side of the equation of
fig. 4 is the torque applied by
the pilot to the control surface

by pushing or pulling the yoke (C stands for com-
manded). The actual force applied by the pilot is
reduced to a moment about the elevator hinge after
dividing by the dimensional gearing ratio. The
gearing needs a special care because it depends
from the particular arrangement of the actual air-
craft command line. Generally, in a commanded
maneuver the pilot control force is non-zero and is
treated as an input in the model equation. A par-
ticular case handled naturally by the simulator is
that of stick-free flight, that is when the applied
pilot force is zero. This enables to investigate on
flight qualities of a given
airplane in stick-free con-
ditions.

When the force-

feedback system is matched
with JSBSim, the cockpit
control loads are computed
at each simulated time step.
Stick and pedal resulting
motion is controlled be-
tween two successive
JSBSim state updates with
a given frequency. This is
also referred to as the “inner” integra-
tion loop while the JSBSim job is then called
the “outer” integration loop.

Fig. 6 illustrates the model of longitudinal

control dynamics. The algorithm controlling the
force cue to the pilot (i) evaluates the inertial
coupling and aerodynamic terms according to the
current aircraft state and to the specific control
surface data, (ii) performs appropriate measures of
the action exerted by the pilot on the yoke, and (iii)
calculates the angular acceleration contained in the
first term of the model equation, resulting from the

(Continued on page 4)

Figure 3b

Figure 4

Figure 5

Figure 6. Schematic of longitudinal
control loading implemented in the
force feedback software.

Page 4 (Continued from page 3)
difference between the sensed actions and the calculated aerodynamic/inertial actions. Finally, the con-
trol loading module orders to the actuator connected to the yoke to move (accelerate) accordingly, giv-
ing the desired “feel” to the pilot. If pilot’s action is adequate to react to the feedback and keep the yoke
position stationary, the flight conditions remain “stick-fixed,” or nearly so. The stick-fixed, or static
equilibrium condition happens when there is a balance between pilot’s action and aerodynamic actions,
with a consequent non-varying angular excursion of the cockpit control.

The actuators and the rest of the hardware of the force feedback system are designed to reproduce a

realistic amount of effort required to the subject pilot. The following are
the main characteristics of the force feedback system:

Maximum force on yoke ±400 N (push/pull)
Maximum torque on yoke ±40 Nm (turn left/right)
Maximum force on each pedal 400 N (left or right)

For the sake of uniformity and for possible future integration with newer
releases of JSBSim, the control loading code input file follows the
JSBSim configuration philosophy. It reads similar XML files containing
a description of the following items: i) control surface geometric and
mass properties, ii) control system mechanical properties, i.e. various
gearings, iii) Control surface aerodynamic characteristics, i.e. hinge mo-
ment coefficients, iv) control surface auxiliary characteristics, v) data
logging directives.

Example of coding

Here is an indicative structure of the class CFFBConfig that handles the
control force computation.

class CFFBConfig
{
public:
 CFFBConfig();
 ~CFFBConfig();

 bool LoadFFBFile(const string& strFileName);

 void ComputeFFB(int typeCommand, // AL , EL , RU
 double& ffb , // Out
 const ForceFeedBackData_t& ffbdata ,
 double commandPosition,
 double commandRate,
 double dt ,
 double pilotForce);

protected:
 void ResetValues();
 void ExtractAmplification(FGConfigFile *pCfg);
 void ExtractGearing(FGConfigFile *pCfg);

 void ExtractControlMassBalance(FGConfigFile *pCfg);
 void ExtractControlMetrics(FGConfigFile *pCfg);
 void ExtractTable(FGConfigFile *pCfg , CTable2d& tab);
 bool ExtractData(FGConfigFile *pCfg , FFBData_t& rData);

 amplification_t m_amplification;
 gearing_t m_gearing;
 control_mass_balance_t m_control_mass_balance ;
 control_metrics_t m_control_metrics[3];
 brakes_t m_brakes;
 CTable2d m_Ch[3];
 CTable2d m_ChTrim[3];

 FFBData_t m_FFBData[3];
};

About the author

Agostino De Marco was born in
Naples in 1969. He graduated from the
University of Naples "Federico II" in
1996, earning a degree in Aerospace Engi-
neering.

In 2001 he received a PhD in Naval

Engineering from the same University.

Since 2002 he has worked as a re-

searcher in the Department of Aeronauti-
cal Design and teaches Flight Simulation
Techniques, and Aircraft Flight Stability
And Flight Qualities as a member of the
Engineering faculty.

www.dpa.unina.it/demarco
www.dpa.unina.it/adag

Figure 7. Some geometrical quantities
that play a role in the control surface
dynamics.

http://www.dpa.unina.it/demarco
http://www.dpa.unina.it/adag

Page 5 Hardware / Software Integration with JSBSim: Manta UAV
Sam Heyman

transmitter. An off-the-shelf USB interface cable
provided a link between the PC running the flight
simulator and a transmitter, for manual control.

Figure 2 shows a plot of the ‘Manta’ data,
logged during a virtual flight test (in FlightGear).
It shows the response of the aircraft to a step input,
produced by a half deflection of the trim command
on the radio control transmitter (0.01 rad deflec-
tion). The plot of the elevator position was scaled
up by a factor of 10 to make it clearer to see.

The aircraft pitch response is a decaying oscil-

lation with an overshoot of 300% and a natural
frequency of approximately 10 seconds. This re-
sponse is predominantly a phugoid motion, with an
almost non-existent short period response. The full
longitudinal transfer function for pitch angle re-
sponse to an elevator input is given in equation (1),
this transfer function consists in two modes of re-
sponse: the short period mode and the phugoid
mode. Given the plot of the aircraft pitch angle
response, it was apparent that the response could

be modeled with the phugoid term alone, given in
equation (2). This simplification significantly
eased the analysis of the aircraft stability.

(Continued on page 6)

The aim of this project was to develop a HITL
(Hardware In-The-Loop) simulation of an autono-
mous air vehicle using the FlightGear flight simu-
lator. A standard radio control transmitter would
provide manual control of the aircraft and aircraft
state data would be returned via a simulated com-
munication downlink. This would enable an exter-
nal control system to be connected and tested.

The operation of autonomous UAVs is similar

to that of a radio controlled aircraft, and most of
the hardware is common. An existing radio con-
trolled aircraft had previously been implemented
by the author in FlightGear, and was therefore
readily available. This formed the starting point of
the project. It was assumed that the aircraft would
be equipped with a horizon sensing attitude stabili-
sation system. This is a highly effective and low
cost way of stabilising the aircraft in pitch and roll.
An example of such system is the FMA Co-Pilot
CPD4, shown in Figure 1.

The attitude stabilisation system uses horizon
detectors, such as infrared or thermopile sensors,
to detect the aircraft attitude. The aircraft attitude
is then fed into the stabilisation system forming a
simple feedback loop. This helps maintain the air-
craft level in both axes. The attitude stabilisation
system was modeled in the aircraft flight dynamics
model (JSBSim), as it constitutes a low-level part
of the overall control system.

Through the course of the project, two pro-

grams were developed to handle and log the air-
craft data, output by the simulator. The aircraft
pitch and roll motions were analyzed, and, from
the aircraft state data logged during “virtual flight
tests” (using FlightGear/JSBSim), an approxima-
tion for the longitudinal response was derived.
This enabled a Matlab Simulink model to be pro-
duced, which was used as a development tool for a
low level pitch attitude stabilisation system. A roll
attitude stabilisation system was also implemented
by testing different values of gain in the feedback
loop and choosing the one that gave the best han-
dling qualities.

“Flight Tests” and Modeling

Manual control of an autonomous air vehicle is

often provided through a standard radio control

Figure 1. FMA Co-Pilot CPD4.

]2[
1

]2[
1

22
2

22
1

spspspphphph ss
sT

ss
sT

A
ωωζωωζη

θ θθ
θ +⋅⋅⋅+

+⋅
+⋅⋅⋅+

+⋅
=(1)

]2[
1.

22
1

ωωζη
θ θ

θ +⋅⋅⋅+
+

=
ss

sT
A(2)

Figure 2. Manta UAV pitch response.

Page 6 pitch angle response, this system is well suited for
damping phugoid response. Figure 4 illustrates
how the system can be implemented.

In order to determine the required gain K, a

root locus was plotted in Matlab (Figure 7.2) and,
with the help of the ‘rlocfind’ function, the re-
quired gain value for a damping of approximately
0.7 was derived:

Having obtained the amount of gain needed,

the pitch angle feedback loop was added to the
Simulink model. The results produced are shown
in Figure 5 (next page).

The aircraft JSBSim flight control system was

then altered to provide the feedback loop. For this
two extra blocks ‘Pitch Feedback’ and ‘Elevator
Control Aug’ were added. The ‘Pitch Feedback’
block takes the pitch angle and multiplies it with
the desired gain. The ‘Elevator Control Aug’ block
sums the pitch angle feedback and the open-loop
elevator control to give the elevator position. The
pitch control section of the aircraft FDM is given
below [Ed. I modified Sam’s original specification
to reflect the new JSBSim-ML v2.0 format]:

<summer name="pitch trim sum">
 <input>fcs/elevator-cmd-norm</input>
 <input>fcs/pitch-trm-cmd-norm</input>
 <clipto>
 <min> -1 </min>
 <max> 1 </max>
 </clipto>
</summer>

<aerosurface_scale name="elevatorctl">
 <input> fcs/pitch-trim-sum </input>
 <min> -0.5 </min>
 <max> 0.5 </max>
</aerosurface_scale>

<pure_gain name="pitch feedback">
 <input> attitude/theta-rad </input>
 <gain> 0.032 </gain>
</pure_gain>

<summer name="elevator control aug">
 <input>fcs/elevatorctl</input>
 <input> fcs/pitch-feedback </input>
 <clipto>
 <min> -0.5 </min>
 <max> 0.5 </max>
 </clipto>
 <output>fcs/elevator-pos-rad</output>
</summer>

Additional virtual flight tests were carried out

and the necessary flight data recorded. The re-
sponse observed is plotted in Figure 6 (next page).
The plots accurately matched the Simulink model
predictions. In terms of handling through the radio
control transmitter, the aircraft felt much more
stable, as hoped. Sharp inputs were much better
damped and the aircraft regained stability faster.
Pilot workload was thus greatly reduced.

(Continued on page 7)

(Continued from page 5)
From Figure 2, the frequency, damping, time

constant and pitch gain were derived giving the
following transfer function:

A Matlab Simulink model of the aircraft was
implemented, as a tool for the development of the
stability augmentation system. The model is shown
in Figure 3. The graphs produced by the Simulink
model, also given in Figure 3, accurately match
those obtained from the virtual flight tests on the
simulator (FlightGear/JSBSim), thus validating the
aircraft model.

Stability Augmentation

From the virtual flight tests and the plots of the

data, it was clear that the ‘Manta’ UAV is an un-
steady aircraft that requires constant pilot attention
to maintain straight and level flight. This is not
acceptable for an autonomous air vehicle. An atti-
tude stabilisation system would help make the air-
craft steadier.

As previously shown, the Manta UAV pitch
response is dominantly a phugoid motion and pitch
angle feedback is an appropriate way of damping
phugoid oscillation. The technique is the same as
that used in early autopilots. Since the pitch angle
is fed back, the elevator moves to oppose any pitch
angle error. As the phugoid mode has fairly large

4.0117.0
95.530

2 ++
+−

ss
s

K

Pitch
angle
? Pilot

command
+

+

Figure 4. Pitch angle feedback to eleva-
tor.

032.07.0 ==ζK

(3)
4.0117.0

95.530
2 ++

+−=
ss

s
η
θ

Figure 3. Simulink model of the Manta
UAV.

(Continued from page 6)
Results

From the correlation between the Simulink

predictions of the pitch stabilisation and the flight
test results, it was clear that the aircraft could be
modeled using Matlab Simulink and that the model
could be used as a development tool for an attitude
stabilisation system.

It was also apparent that an attitude stabilisa-

tion system, based on attitude feedback, was an

Page 7

effective way of stabilising the aircraft and that
embedding it in the JSBSim flight dynamics model
was justifiable.

More information and aircraft model available

on the project webpage (http://seis.bris.ac.uk/
~sh1823/Manta.htm).

Figure 5: Simulink Model Predictions for Pitch Angle Feedback (K=0.032)

Figure 6. Aircraft Pitch Response With Pitch Angle Feedback

About the author

Sam Heyman is in his final year of

'Avionic Systems Engineering' at the Uni-
versity of Bristol in England. He spent his
third year abroad, at Linköpings Univer-
sitet in Sweden, where he took part in the
'Manta' UAV group project. He was re-
sponsible for modeling the aircraft in
FlightGear in order to help predict the
flying characteristics. He has recently
completed his research project, in which
he used the FlightGear model of the
'Manta' to set-up a hardware-in-the-loop
simulation of an autonomous air vehicle.
The main focus of the project was to de-
velop and embed a stability augmentation
system in the flight dynamics model.

In his spare time Sam is a keen sky-

diver and micro-light pilot. He also enjoys
flying RC aircraft.

http://seis.bris.ac.uk/~sh1823/Manta.htm
http://seis.bris.ac.uk/~sh1823/Manta.htm

Page 8 JSBSim Commander Screenshots

Above: Flight control systems for JSBSim aircraft can be created and modified in the flight control system editor.

Below: The propulsion system editor allows selection of engines, placement and orientation.

Page 9

JSBSim Commander Source Opened

Last year Back of the Envelope featured a

story about an application called, JSBSim Com-
mander. The application was meant to provide a
GUI editor for JSBSim aircraft and engines, and
also to act as an interface to running JSBSim and
analyzing results. JSBSim Commander was in-
spired by an original application created by Mat-
thew Gong. Matthew has taken his version JSBSim
Commander quite far—to the point of actually
working, and his version is written using
wxWidgets, a cross-platform GUI toolkit. The pro-
ject is in the process of becoming an open source
project hosted on SourceForge. The web site is at
www.sf.net/projects/jsbsimcommander. The
source code has now been uploaded to the web
site, and screen shots (see page 8) have been up-
loaded.

Aerocross Systems and JSBSim

Aerocross Systems, Inc. is utilizing JSBSim as

the 6DOF simulation core in their real-time, flight
hardware-in-the-loop test platform. This platform
is used for flight hardware/software development,
integration, and testing in support of several Un-
manned Aerial System (UAS) programs. Aero-
cross Systems has also successfully integrated
JSBSim with commercial off-the-shelf and open
source Control System Computer Aided Design
(CSCAD) packages to support flight control law
development and analysis.

New JSBSim Version Released with New Flight-
Gear Version

The new version of FlightGear incorporates

some significant modifications and enhancements
with the newest revision of JSBSim, v0.9.10. This
release of JSBSim features a revamped specifica-
tion language that is more well-formed XML. The
new version of the JSBSim config file format is
called JSBSim-ML v2.0 (JSBSim Markup Lan-
guage).

Among the new capabilities afforded by JSBSim-
ML v2.0 are:

• There is an early beta version of an XML

schema (JSBSim.xsd) that can be used to
validate any new aircraft config file.

• There is an early beta version of an XML
stylesheet (JSBSim.xsl) that can be used
to format an aircraft config file for pres-
entation in a web page.

• Units can now be specified for some air-
craft parameters.

• Functions can be specified in an aerody-
namic "coefficient" definition. Etc.

Several new capabilities have been added in code,
too:

• An experimental ground reactions enhance-

ment reduced ground jitter at low or zero ve-
locity for most aircraft. This is still a work in
progress.

• More error handling, more robust handling of
input files.

• A new turboprop engine model has been
added.

• The propeller model has been enhanced.
Sensors can be modeled in the flight control
definition for an aircraft.

• Functions can be modeled as part of a flight
control definition. Etc.

• Gimballing can be done for rockets, etc.

As part of this significant upgrade, be advised that
not all aircraft have been updated to the new
JSBSim-ML v2.0 format. Some aircraft have tem-
porarily lost aerosurface animations. It is not diffi-
cult to add these features back. Instructions and
tools for converting from the old format to the new
are available at the JSBSim web site: www.jsbsim.
org. Any problems with a JSBSim aircraft model
should be promptly reported to either this list or
the JSBSim mailing list.

For more information on the new JSBSim capabili-
ties and on JSBSim-ML, see the project web site at
www.jsbsim.org.

News: “JSBSim Commander” SourceForge Project

Aerocross Systems, Inc. is testing a Rotax 914 engine in this image, exhaust pipes glowing with
gases passing through at >1650°F! More information on the Rotax 914 can be found here:
http://www.rotax-aircraft-engines.com/aircraft/aircraft.nsf/eng_914F?OpenPage

http://www.sf.net/projects/jsbsimcommander
http://www.jsbsim.org
http://www.jsbsim.org
http://www.rotax-aircraft-engines.com/aircraft/aircraft.nsf/eng_914F?OpenPage

Page 10

As an example, let’s examine the lift force due
to angle of attack (alpha). We know that increasing
the angle of attack increases lift – up to a point.
Lift force is the product of dynamic pressure
(qbar), wing area (Sw), and lift coefficient (CL). In
this case, the lift coefficient is determined via a
lookup table, using alpha as a lookup index into
the table (Listing 1). What the function results in is
for lift due to alpha to be calculated each pass
through the aerodynamics calculations in JSBSim.
The value of the function is the product of qbar,
wing area, and lift coefficient as determined by the
lookup table. For instance, if alpha (in radians) is 0
degrees, the lift coefficient is 0.240.

So, where do we get this information about the
Beech 99? Aeromatic has created for us a boiler-
plate configuration file populated with plausible
values for many aerodynamic terms. However,
there are a lot of refinements that can – and
should - be made. First of all, the document men-
tioned at the beginning of this article contains spe-
cific information about the aerodynamic qualities
of the aircraft. Let’s look at how to tweak a
JSBSim aerodynamics specification for a specific
aircraft.

Let’s consider CLα first. The symbol CLα is

shorthand for δCL/δα, or the change in lift coeffi-
cient with a change in alpha. This is just the slope
of the lift coefficient curve (see Fig. 5 for an exam-
ple). The lift curve slope for an ideal 2D airfoil
section is 2π (per radian). For a cambered airfoil,
the lift curve does not pass through zero – that is,
there is an inherent lift to the airfoil even at zero
angle of attack. Furthermore, a real wing (i.e. not a
2D airfoil section) is not as efficient as an airfoil,
and the slope of the lift curve will be somewhat
less than 2π. Additionally, a real wing will eventu-
ally stall at a particular angle of attack, perhaps
around 12-16 degrees. The information given in
the Beech 99 report is valuable, however, some
adjustments will have to be made to account for
stalling. The value of CLα defines a slope – a line
that goes on forever! [to be continued later ...]

The thought of creating an aircraft flight
model in JSBSim can seem daunting. One must
gather a considerable amount of information
about an aircraft before it can be accurately
modeled. To help guide flight modelers in the
task of creating a flight model, a document is
currently being written that serves as a journal
of this author’s efforts towards creating an ac-
curate flight model of the Beech A99A Airliner.
What follows here are excerpts from that docu-
ment. It is hoped that the full document can be
finished and posted on the JSBSim web site in
the near future (before the next newsletter
comes out in July).

Aerodynamic
forces and
moments [in
JSBSim] are
modeled using
the classic
c o e f f i c i e n t
b u i l d u p
method. The
lift, drag, and
side forces,
and the pitch,
roll, and yaw
moments need
to be calcu-
lated to deter-
mine the flight
path that an aircraft will take. Many factors con-
tribute to each of the forces and moments acting on
an aircraft. For instance, lift is a function of the
inherent lift of the aircraft at zero degrees angle of
attack, the lift due to a change in angle of attack
from zero degrees, the lift due to a deflection of
the horizontal stabilizer (pitch command), the lift
due to pitch rate, the lift due to flap deflection, etc.
Likewise, for the other five axes, the total force or
moment is the sum of the individual contributions.

The aerodynamic definition for a JSBSim air-

craft flight model is comprised of six sections cor-
responding to the forces and moments about three
axes each (for a total of six degrees of freedom). In
each section, any number of functions are present
that define individual contributions to a force or
moment. Additionally, “global” functions may be
defined at the beginning of the aerodynamics sec-
tion, outside of any axis section, for later use by
another function.

A function in JSBSim may be composed of

common arithmetic and/or trigonometric opera-
tions on one or more operands. MathML, the XML
markup language for mathematical constructs, in-
spires the format of the JSBSim function but the
JSBSim function is much simpler. A cue is also
taken from AeroML, the proposed standard under
consideration by AIAA for exchange of simulation
models.

<function name="aero/coefficient/CLalpha">
 <description>Lift_due_to_alpha</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <table name=”CL”>
 <independentVar lookup="row">aero/alpha-rad</independentVar>
 <tableData>
 -0.20 -0.720
 0.00 0.240
 0.22 1.300
 0.60 0.664
 </tableData>
 </table>
 </product>
</function>

Listing 1. Lift coefficient as a function of alpha.

Aerodynamic Modeling in JSBSim
Jon S. Berndt

Page 11

Wingspan 45.9 feet (13.98 meters)

Horizontal tail span 22.38 feet (6.82 meters)
Tail area 100 feet2 (9.29 meters2)

MAC 4.63 feet (1.41 meters)
Aspect Ratio 5.0

Sweep 17°

Dihedral 7°

2 Hartzell HC-B3TN-3 or HC-B3TN-3B hubs with
Hartzell T10173E-8 or T10173B-8 blades.
Diameter: 93-3/8 in.
Pitch settings at 30 in. sta.:
Reversing propeller:
Reverse - 11°
Feather - 87°

Flight idle propeller low pitch stop is set so that at
2000 r.p.m., torque shall be an indicated 600 +60
ft.-lb. corrected for sea level standard day.
Secondary flight idle stop shall be 210 +40
propeller r.p.m. higher than flight idle stop with a
gas generator speed of 70 percent.

Fuselage/Propeller clearance 3 inches (0.076 meters)

Engine thrust lines and wheelbase
span 13 feet (3.96 meters)

Flap total Area 37.8 ft2 (3.51 m2)
Flap span (each) 12.4 ft (3.78 m)
Flap chord 1.5 feet (0.46 m)

Beechcraft B99
Model A99A Airliner

Engines: Pratt & Whitney PT6A-27,
Shaft HP 680, Equiv. Shaft HP 715,
Jet thrust 76 lbs., Max. allowable
TIT 1337° F (725° C). Propeller
shaft speed 2100 rpm. Burns JP-4,
JP-5, JP-8, Jet A, Jet A-1, Jet B

Maximum operating speed: 260 mph (226 kts,
@ 15.5kft, for 15.5kft to 25kft decrease 4 kts
per 1kft)
Maneuvering speed: 195 mph (169 kts)
Flaps extend speed: 161 mph (140 kts)
Landing gear extend: 180 mph (156 kts)
Landing gear operating: 150 mph (130 kts)

Flaps Maximum 43°
Aileron up 18°, down 15°
Elevator up 12°, down 15°
Stabilizer up 4.25°, down 3.5°
Rudder right 26°, left 20°

Datum

Weight
Empty equipped 5777 lbs. (2620 kg)
Full Fuel
Max takeoff 10,900 lbs. (4944 kg)
CG @ +179 to +195 in. (gear extended), 26% MAC
Ixx 12,464.8 slug-ft2 (16,900 kg-m2)
Iyy 17,627 slug-ft2 (23,900 kg-m2)
Izz 28,691 slug-ft2 (38,900 kg-m2)

Wing area 279.97 ft2 (26.01 meters2)
Wing chord (MAC) 6.5 feet (1.98 meters)
Aspect Ratio 7.54
Dihedral 6.8 degrees
Wing root airfoil NACA 23018
Wing tip airfoil NACA 23012

Elevator
Area 26.4 ft2 (2.45 m2)
MAC 0.39

Vertical tail
Area 44.9 ft2 (4.17 m2)
Span 7.6 ft (2.32 m)
MAC 6.3 ft (1.9 m)
AR 1.29
Sweep 19.5°

18 feet (5.48 meters)

Engine thrust offset 2°

Height 14.4
feet (4.38 m)

Rudder
Area 12 ft2 (1.12 m2)

MAC 0.55

Aileron total area 13.9 ft2 (1.29 m2)
Aileron span (each) 7.9 ft (2.4 m)
Aileron chord 0.9 ft (0.28 m)

Beech 99 A99A Airliner Specifications (compiled by Jon S. Berndt 2006)

When crafting a flight model
for any specific aircraft, col-
lecting as much data as possi-
ble about that aircraft is essen-
tial to the process. The diagram
at left was used by the author to
collect and record much rele-
vant information about the
chosen aircraft, the Beech
A99A Airliner.

This diagram is taken from the
paper “A Journal for the Crea-
tion and Refinement of a
JSBSim Aircraft Flight Model”,
to be released in the coming
months.

Page 12

 {with <style>}
 {, {definitions,} <function> ...}

A relatively easy way to learn gnuplot is to

start it up and play with it. Typing “gnuplot” will
start the application and give the prompt. For your
first command, type “plot 1”. The result is a chart
with a horizontal line at y=1. Let’s leave the sim-
ple stuff behind and go straight to a JSBSim data
log file in comma separated value (csv) format.

When working with csv files, the first thing

that needs to be done is to tell gnuplot that it
should use a comma “,” as a data delimiter:

set datafile separator ","

The next thing is to tell gnuplot which data
to plot. In my setup, I simply type this com-
mand:

plot "c172outE0.csv" using 1:37

which results in the plot at left.

The plot command is specifies that column
1 data should be used for the X axis, and
column 37 data should be plotted on the Y
axis. In JSBSim, column 1 (there is no col-
umn 0) is always Time. In the particular
data log ("c172outE0.csv"), column 37 is
Distance AGL.

Unfortunately, it can be kind of a pain to
find which terms you want to plot. One
convenient script of shell commands can be
used to get an alphabetically sorted list of
terms and the column number for that term
in the data log:

head -1 $1 | sed "s/, /\n/g" |
cat -b | sort -fdk2

I have a script called index.sh that contains
the above commands. For that script to

work, the filename containing the data must be
given on the command line as an argument:

./index.sh c172outE0.csv

The output from the above command is,
column variable:

 33 Alpha
 66 Alt Error Lag
 29 Altitude
 65 Altitude Error
 69 AP Alt Hold Switch
 34 Beta
 73 Control Summer
 37 Distance AGL
 19 Drag

(Continued on page 13)

According to the project web site:

Gnuplot is a portable command-line driven

interactive data and function plotting utility for
UNIX, IBM OS/2, MS Windows, DOS, Macintosh,
VMS, Atari and many other platforms. The soft-
ware is copyrighted but freely distributed (i.e., you
don't have to pay for it). It was originally intended
as to allow scientists and students to visualize
mathematical functions and data. It does this job
pretty well, but has grown to support many non-
interactive uses, including web scripting and inte-
gration as a plotting engine for third-party appli-
cations like Octave. Gnuplot has been supported
and under development since 1986.

Gnuplot is a great complement when used with
JSBSim data logging capabilities. It’s not a typical
plotting tool, in that directives to gnuplot that de-
scribe how a plot is to be constructed and how it
should look are given on the command line or
through a script file. It takes a little getting used to,
but once you become familiar with it, it is found to
be easy to use and powerful.

You can download gnuplot from www.

gnuplot.info. For those with cygwin or Linux, it
may already be on your system. Typing “gnuplot”
at the command line will show that. One of the
most powerful commands to use with gnuplot is
the plot command. It has a lot of options:

plot {<ranges>}
 {<function> |
 {"<datafile>" {datafile-modifiers}}}
 {axes <axes>} {<title-spec>}

Using gnuplot with JSBSim
Jon Berndt

http://www.gnuplot.info
http://www.gnuplot.info

Page 13 (Continued from page 12)
 74 Elevator
 … …
 etc.

Labels, titles, a key, line style can be added.

Labels, the title, and margins are set before the call
to plot:

set title "Altitude"
set ylabel "Altitude (ft)"
set xlabel "Time (sec)"
set key on left top box
set lmargin 12
set rmargin 5
set tmargin 5
set bmargin 5

Several traces can be made on one plot simply

by specifying several items to plot:

plot "c172outE0.csv" using 1:37 title "E0" with lines lw 1,\
 "c172outE1.csv" using 1:37 title "E1" with lines lw 1,\
 "c172outE2.csv" using 1:37 title "E2" with lines lw 1,\
 "c172outE3.csv" using 1:37 title "E3" with lines lw 1,\
 "c172outE4.csv" using 1:37 title "E4" with lines lw 1,\
 "c172outE5.csv" using 1:37 title "E5" with lines lw 1

In the above example, the “with lines lw 1”

options tell gnuplot to draw the traces with a solid
line of width one (see figure below).

The plot below was created in a study to evalu-

ate a series of gains to use in a proportional con-
troller for an altitude hold autopilot. A script file
was created that used sed to change the gain, and
run JSBSim (specifying an output file to store the
data log in – this is a new capability with stand-
alone JSBSim). When all the runs were completed,
gnuplot was used to plot the altitude traces in each
of the data log files.

Gnuplot commands can be stored in a script

that creates a series of plots at once. The output
type (a “terminal” type) can be specified, as well,
so that output can be created in several popular
formats, including Adobe PDF, png, gif, SVG,
X11 screen display, etc.

Gnuplot is a very capable application with a lot

of options. However, only a few are really needed
to get a lot of use out of it, and creative use of
gnuplot can be a valuable aid in designing control
systems and debugging.

Worldwide Aeros Corporation has conceived a multi-use, heavier-than-air dirigible. From their
web site: “The word Aeroscraft describes a flying craft that derives its lift partially from lifting gas
(helium) and partially from the traditional dynamic lift created by the shape of the body. Aeros has
designed a craft that takes advantage of both methods of lift. This design approach has resulted in the
evolution of a craft that can fly further, operate more economically, and lift more than any other craft
in the skies. The Aeroscraft has been designed to fill the very widest range of missions and conditions.”

Modeling an airship adds a whole new dimension, because not only can one add bouyancy to the
list of items that can cause forces and moments on an aircraft, but also the effects of “virtual mass”
must be accounted for. When an aircraft (or submarine, fish, etc.) is moving through a medium of
about the same (or greater) density, when accelerating the aircraft itself, some of the medium (e.g. air
in this case) around it must also be accelerated. The same is true when decelerating.

There has been interest in adding this capability to JSBSim, and there is at least one effort aimed at
doing so.

In a recent article for a bi-monthly publication, these uses for JSBSim were listed:

• Teaching modeling and simulation concepts as part of the Modeling and Simulation Famili-

arization Tool developed at the Air Force Research Laboratory (Wright-Patterson AFB).
• Providing flight modeling capabilities for a battlefield simulation framework developed by

the Man-System Interaction department at the Swedish Defence Research Agency.
• Serving as the flight model for a dynamic soaring study at Sandia Laboratories.
• Serving as the flight model for an Ares Mars Airplane educational demonstrator (see www.

redcanyonsoftware.com).
• Serving as the 6DOF simulation core in a real-time, flight-hardware-in-the-loop test platform

that is used for flight hardware/software development, integration, and testing in support of
several Unmanned Aerial System (UAS) programs.

• JSBSim has also been successfully integrated with COTS and open source Control System
Computer Aided Design (CSCAD) packages to support flight control law development and
analysis.

Highlighted
References

Online:

“Measurement of the Effect of
Accelerations on the Longitudinal and
Lateral Motion of an Airship Model”
http://naca.central.cranfield.ac.uk/
reports/arc/rm/613.pdf

Visit us on the web at:
www.jsbsim.org

Page 14

Simulate This!

JSBSim in Use …

http://www.redcanyonsoftware.com
http://www.redcanyonsoftware.com
http://naca.central.cranfield.ac.uk/reports/arc/rm/613.pdf
http://www.jsbsim.org

